
 

 

 



LOGIC, PROOF, AND SETS 
 
THIRD EDITION 
 
 
 
Marvin L. Bittinger 
Indiana University  - Purdue University at Indianapolis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.718 ePub, Inc, 

Carmel, IN 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Copyright © 2017, 2.718 ePub, Inc.   

 

All rights reserved.  No part of this publication may be reproduced, stored in a retrieval 

system, or transmitted, in any form or by any means, electronic, mechanical, 

photocopying, recording or otherwise, without the prior written permission of the 

publisher.  Printed in the United States of America.  

 

ISBN 978-0-9859975-8-8  



 

 

 

 

 

 

DEDICATED TO THE MEMORY OF    Nelson L. Zinsmeister 

 

 

Nelson and I were roommates and fellow math majors at Manchester College.  Two 

years my senior, Nelson was a most inspiring person who saw potential in me as a writer 

and math student at a time when I saw little in myself.  Nelson went on to Purdue 

University attaining a Master’s Degree in Mathematics, and accepted a position as a 

math teacher in upstate New York.   

 
It was Nelson who stirred me to graduate studies in mathematics at The Ohio State 

University and then to Purdue University, where I received a PhD in Mathematics 

Education in 1968.  I went on to teach at Indiana University – Purdue University at 

Indianapolis, became a math textbook author for Pearson Education, and retired as 

Professor Emeritus in Mathematics Education.   

 

One night in the Fall, of 1963, Nelson, his pregnant wife Mary Martha, and her sister 

succumbed to a drunken driver who ran a stop sign south of Markle, IN.  Etched in my 

heart is the pain of that news.  I yearn to know how Nelson’s life might have spawned 

numerous other students, teachers, and Christian leaders.  I treasure his inspiration in 

my life. 

  



 

 

PREFACE TO THE THIRD EDITION 
 

LOGIC, PROOF, AND SETS by Marvin L. Bittinger 

 

The purpose of this text is to provide a basic background in symbolic logic connected to 

mathematical proofs and attainable at an early level in the undergraduate curriculum.  

This text provides tools for the study of graduate mathematics. 

 

 There are various uses to which the book is addressed.  The author has effectively 

used this material both as a supplement to the last semester of calculus, with an extra 

hour of credit given upon completion, as well as an introduction to a junior level course 

on the real number system, modern algebra, real analysis, linear algebra, or advanced 

calculus.  It was found that such a study of logic, proof, and sets greatly speeded later 

study for the student knew how to form sentence negations, create proofs of 

conditional statements, proofs by contradiction, proofs by mathematical induction, 

proofs by cases, and so on.   

 

 The author wishes to express his appreciation to a number of people.  Professor 

Angelo Margaris, formerly of The Ohio State University, taught a short unit in logic to a 

group of struggling graduate students and provided the bud of the idea to the author.  

His patience and that of others in the department allowed many of these students to go 

on to successful careers in mathematics.   

 

 This third edition could not have been accomplished without the dedication of 

two devotees of the book.  Mike Rosenborg did extensive rewriting of the text and 

rendered the manuscript into new computer files.  Phillip Lestmann of Bryan College did 

a final editing and prepared the files for online study.  The author is in deep 

appreciation of their efforts. 

  

 This book was originally published in its First (1970) and Second (1982) editions 

by Addison-Wesley Publishing Co.  The Third edition is published in 2017 by 2.718 ePub, 

Inc. in Carmel, IN.   

 

 

 

Carmel, IN 

2017                                                                                                                                    

MLB 



 

 

THE AUTHOR 

 
Marvin L. Bittinger, is Professor Emeritus of Mathematics Education at Indiana University – 
Purdue University at Indianapolis.    
 
Since earning his Ph.D. in mathematics education from Purdue University in 1968, Professor 
Bittinger has been teaching mathematics and writing textbooks at the university level for nearly 
50 years.  He has authored more than 250 mathematics publications which have sold more than 
13  million copies.  In addition, Marv has written a book entitled Dusty Baker’s Hitting 
Handbook, co-authored by Jeff Mercer and longtime Major League Baseball player and 
manager Dusty Baker.  He has also applied mathematics to the writing of a rather unique book, 
The Faith Equation:  Mathematical Evidence for Christianity (for details see 
www.faithequation.com). 
 

 
 
 
Professor Bittinger has also had the privilege of speaking at many mathematics conventions.  
His topics have included Baseball and Mathematics, Mathematical Evidence for Christianity, 
and numerous talks on the improvement of mathematics education at the college level.   
 
Professor Bittinger’s hobbies include baseball, softball, golf, and hiking in Utah.   Marv truly 
loved his time at Purdue, and his fondness for the university has carried over to his family.  He 
and his wife, Elaine; sons, Lowell and Chris; and granddaughters, Emma, Sarah, Maggie, and 
Claire; have traveled near and far to support the Boilermakers (aka, “Makers”) in athletic 
competitions.  In addition to watching Purdue softball games in Arizona and California, Marv 
also annually attends the Women’s College World Series in Oklahoma City.  



1 
 

 

 

 

 

 

 

 

CHAPTER 1     LOGIC 

 

 

 

INTRODUCTION 

 

Just as an artist uses various tools and styles in his work, so does the mathematician. The purpose 

of this text is to study logic and to connect this to mathematical proofs; the tools of the 

mathematician. 

 A person can study impressionism, expressionism, and so on, can know all about water 

colors, oils, and canvas; but never be an artist. However, such knowledge does provide a firmer 

foundation for being an artist. Similarly, your study of this material does not guarantee you will 

be able to prove all you encounter, but should enhance your ability to do mathematical proofs. 

 

1.1 SETS 

 

This brief introduction to sets provides a basis for the study of logic in this chapter. In Chapter 3 

we will study set theory more formally. Apart from notation this section could be omitted or 

lightly read by those previously exposed to the basic concepts of sets.  
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Symbolism. Braces are often used to name sets. For example, the set of integers 1, 2, 3, 4 could 

be named 

{1, 2, 3, 4}. 

This is the roster method for naming sets.  

A method known as set-builder notation is often used to name sets. A property is 

specified which is held by all objects in a set. P(x), read “P of x,” will denote a sentence referring 

to the variable x. For example, “x = 23,” “x is an even integer,” and “1 4x  ” are all sentences 

(or properties) referring to a variable x. The set of all objects x such that x satisfies P(x) is 

designated 

 { | ( )}.x P x   

Thus, the set {1, 2, 3, 4} can be symbolized 

 { |1 4,  is an integer},x x x    

which means 

“The set of all x such that 1 4x  and x is an integer.” 

Membership. Henceforth, the words object, element, and member mean the same thing when 

referring to sets. For example, objects of sets are elements of sets and vice versa. The following 

have the same meaning:    

 ,a A   

 a is in set A, 

 a is a member of set A, 

 a is an element of set A. 

Similarly, a A  means “a is not an element of set A.”  

EXAMPLES. 

1 {1,2,3}

5 {1,2,3}

40 { |  is a multiple of 10}x x
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Subsets. A is a subset of B if every element of A is also an element of B. The following have the 

same meaning: 

 ,A B   

 Every element of A is an element of B, 

 If ,a A  then ,a B   

 A is included in B, 

 B contains A, 

 A is a subset of B. 

EXAMPLES. 

{1,2,3} {1,2,3,4}

{1,3} {1,3}




  

 A set is always a subset of itself; that is, for any set A, .A A  We prove this later. Also, 

A B  means B A  [read “B includes A”].  

Equality for Sets. If A and B represent sets, then A = B means that ‘A’ and ‘B’ represent the 

same set. The following have the same meaning: 

 A = B, 

 A and B name the same set, 

 A and B have precisely the same members, 

 A B  and .B A   

EXAMPLES. 

1
2

{1,2} { | ( 1)( 2) 0}

{ } { | 2 1 0}

{1,2,3} {3,2,1} {1,2,3,3}

x x x

x x

   

  

 

  

Note that the order of listing elements is disregarded as well as repeated use of the same element. 

The Empty Set. The set which contains no elements is known as the empty set and could be 

named { }, but we name it .  For any set A, .A  We prove this later. 
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Intersections. The intersection of two sets A and B is the set of elements common to both sets. 

The intersection is symbolized 

 A B   

or 

 { |  and }.x x A x B    

EXAMPLES. 

{1,3} {1,2,3,4} {1,3}

{1,3,5} {1,2,3, } {1,3,5}

{ | 1} { | 2} { | 2}

{2,4,6,8, } {1,3,5,7, }

x x x x x x

 

 

    

 

  

In the last example, there were no elements in common; so the intersection is the empty set. 

Unions. The union of two sets A and B is the set of elements which are in A or B or both. The 

union is symbolized 

 A B   

or 

 { |  or  or }.x x A x B x A B      

EXAMPLES. 

{1,2} {3,4,5} {1,2,3,4,5}

{2,4,6,8, } {1,3,5,7, } {1,2,3, }

{ | 1} { | 2} { | 1}x x x x x x

 

 

    

  

Exercise Set 1.1 

Use the roster method to name each set. 

1. { |  is an integer and 1 8}x x x    

2. { |  is an integer and 5 0}y y y     

3. { |  is an even integer}x x   

4. { | 2  for some integer }x x k k   

Use set builder notation to name each set. 

5. { 1,0,1, 2}   
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6. {10,11,12,13, }   

7. {10,20,30,40, }   

8. 3
2{ }   

Place  or  in each blank to make a true sentence. 

9.   1_____{2,3}   

10.   3_____{5,7,3,2}   

11.   2_____{ |  is an even integer}x x   

12. 15_____{ |  is an even integer}x x   

Place , ,  or     in each blank to make a true sentence. 

13. {8,9}  _____{7,11,9,8}   

14. {5,4,3,2,1}  _____{1,2,3}   

15. {4,5,6}  _____{6, 4,5}   

16. Pick out the pairs of sets which are equal. 

2{ | 3,   even}A x x x     2{ | 4}B x x    

{7, 2, 4}C      {1, 2}D    

{8,9,7, 4}E      {9,9, 4,7,8}F    

{2,1}G       { 2,2}H     

Determine whether true or false. 

17. 2{ | 3 and  even}x x x    

18. {1,2}   

19. {0}     

20. {0}   

21. {0}    

22. {1, 2}    

Find each of the following intersections. 

23. 1
2{ ,1} { 4,8}    

24. {3,4,5,6,7, } {0,1,2,3,4}   

25. {1,2,3}   
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26. ,A  for any set A 

27. { | 0} { 1}x x x     

Find each of the following unions. 

28. 1
2{ ,1} { 4,8}    

29. {3,4,5,6,7, } {0,1,2,3,4}   

30. {1,2,3}   

31. ,A  for any set A 

32. { | 0} { | 1}x x x x      
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1.2 UNIVERSAL SETS AND COMPLEMENTS 

 

Universal Sets. Mathematicians always have a frame of reference called a universal set. In plane 

geometry the universal set is the set of all points in the plane. In solid geometry the plane can no 

longer be used as the universal set. In calculus we consider the set of real numbers, the set of real 

functions, the set of differentiable functions, and the set of continuous functions as universal sets. 

Usually it is clear what the universal set is, though you may have to decide what it is from the 

title of the book or the chapter you are studying or from the context of the writing. 

Complement. The complement of a set A is defined to be the set of all elements of the universal 

set which are not in A, and is symbolized 

 .A   

EXAMPLE. If a universal set  

 {2,5,7,9,11,82}U    

and 

 {2,9,11,82},A    

then 

 {5,7}.A    

 Note that A A  is always equal to the universal set, and A A  is always equal to .  

We prove this later. 

Subsets of the Real Numbers. We will use the following symbols to name specific subsets of 

the real numbers and refer to them as such throughout the book. 

{1,2,3,4, }   The set of natural numbers 

                                                                     The set of positive integers 

0 {0} {0,1,2,3,4, }   The set of nonnegative integers 

                                                                           = The set of whole numbers 
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{ , 3, 2, 1,0,1,2,3, }      The set of integers 

Notice that 0 .    

{ , 3, 2, 1}       The set of negative integers 

P = {p | p > 1, p is a natural number, p is only divisible by 1 and p itself} 

                      = The set of prime numbers 

Some elements of P are 2, 3, 5, 7, 11, 13, 17, and 19. 

 |  and  and 0a
b

a b b      The set of rational numbers 

EXAMPLES.  52
3 4

,     

Notice 0 ,    since 
1

a
a  for any integer .a   

J = {x | x cannot be expressed as a ratio of two integers} 

                                   = The set of irrational numbers 

EXAMPLES. 

3
4

2

  ( 2.718 )

2

J

J

e J e

J

J







 





  

In fact, .J    

= J = The set of real numbers 

Exercise Set 1.2 

1.  If a universal set {0,1,2,3,10,8},  {1,2,3,10},  {0,1,8,10},  and {0,1,2,3},U A B C     find 

the following. 

a) ( )A B C   

b) A   

c) ( )A B    

d) ( )A B C     
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e) ( ( ))A B C     

f) A B    

g) ( )A B C    

h) ( )A B C    

i) ( )A B C    

j) ( )A B C    

If  is the universal set, find: 

2.    

3. J   

4. J   

5. 0 J   

6.    

7.    

8. 0

   

9. J    

10.  Depict { x | x is an odd integer } in two other ways. 

11.  Suppose D = { x | x is an odd integer } and E = { x | x is an even integer }. Find: 

a) D E   

b) D E   

12.  Display the following sets by the roster method. 

a) 0 { |  and 3  for some }x x x k k      

b) 1 { |  and 3 1 for some }x x x k k       

c) 2 { |  and 3 2 for some }x x x k k       

       Then find: 

d) 1 0   

e) 1 2   

f) 0 2   

g) 0 1 2    

Use the roster method to describe the sets in Exercises 13-18. 

13.    2 2| 2 1 0 | 4 4 0x x x x x x         

14.  2|  and 1x x x     

15. { |  and }x x J x    
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16. {x | x is an integer and x is not even} 

17. {x | x is an integer and x is not odd} 

18. {x | x is an even integer and x is prime} 

19. The intervals are important subsets of .  They are defined and described on the real line as 

follows: 

[ , ] { | }a b x a x b      

[ , ) { | }a b x a x b      

( , ] { | }a b x a x b     

( , ) { | }a b x a x b     

( , ) { | }a x a x      

[ , ) { | }a x a x     

( , ) [ , )a a        

( , ] ( , )a a        

Find: 

a) ( ,3) [2, )     

b) ( ,3) [3, )     

c) [ 1, 2) [1, 4)    

d) [ 1, 2) [1, 4)    

e) [3,3]   

f) (3,3)   

g) [ , ] [ ( 1), 1]n n n n       

h) [ , ] [ ( 1), 1]n n n n       

20. If U is a set, then ( ),U  the power set of U, is { | }.A A U  For example, 

({ , }) { ,{ },{ },{ , }}.a b a b a b    Note that ( )U  is a set whose elements are sets. Find: 

a) ({1, 2})   

b) ({0})   
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c) ({1, 2,3})   

d) ( )    

e) Make a conjecture as an answer to the following question, based on the results of a)-d) 

above: The power set of a set with n elements has how many elements?  
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1.3 SENTENCES AND STATEMENTS 

 

Logic and mathematical proof can be studied just as algebra, geometry, or calculus. To study 

logic is to study the language of mathematics.  

 Just as everyone uses sentences to convey ideas, mathematicians use sentences to convey 

their ideas; for example, 

 

3

0

1,

2 3 5,

cos sin 3,

x y

x dx

 

 



  

and so on.  

Statements. Declarative sentences which are true or false, but not both, are called statements. 

The following are statements. 

 Barry Bonds hit 73 home runs in one season.            (True) 

 2 + 3 = 6                                                                     (False) 

 For every x, if ( ) sin ,  then ( ) cos .f x x f x x            (True) 

 The 26,000th digit of π is 4. 

In the last example, we know it is a statement, though offhand we do not know whether it is true 

or whether it is false. The following are not statements. 

 Why are you studying mathematics? 

 He is a baseball player. 

 x + 1 = 0 

 k – m = b 

Variables. The sentence, 

 He is a baseball player, 

cannot be judged true or false because we do not know who ‘He’ is. If the word ‘He’ is replaced 

by ‘Donald Trump’ forming the sentence 

 Donald Trump is a baseball player, 
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The sentence becomes a (false) statement. Similarly, if ‘x’ in the sentence 

 x + 1 = 0 

is replaced by ‘3’, forming the sentence 

3 + 1 = 0, 

The sentence then becomes a (false) statement. 

 The letter ‘x’ is a variable in the sentence x + 1 = 0. A letter (or other symbol) that can 

represent various elements of a universal set is called a variable. Thus, ‘He’ is a variable in the 

sentence 

 He is a baseball player. 

 We can make a sentence a statement by replacing its variables by numbers or by 

attaching phrases such as “For every” or “There exists” to the sentence. For example, 

 x < 3 

is not a statement, but each of the following is a statement: 

 1 < 3, 

 5 < 3, 

 For every real number x, x < 3, 

 There exists an x such that x < 3. 

Solution Sets. Replacements for variables of a sentence are always chosen from some universal 

set.  

EXAMPLE. Replace the variable in the sentence 

x + 1 < 3 

by each element of the universal set {0, 1, 2, 3} and decide the truth value of each resulting 

sentence. 

0 + 1 < 3        (True) 

1 + 1 < 3        (True) 

2 + 1 < 3        (False) 

3 + 1 < 3        (False) 
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 Any replacement which makes a sentence true is called a solution. The set of all solutions 

is called the solution set of the sentence. In the above example the solution set is {0, 1}.  

 You probably know other more direct ways of finding solution sets using algebra. 

 From now on we consider only sentences which are statements or statement forms which 

become statements when meaningful replacements are made for all their variables. 

 When doing proofs, we may consider a sentence like 

If x = 11, then 3x = 33 

to be a statement because we have assumed x represents an element of a universal set. 

Exercise Set 1.3 

Consider the following sentences for Exercises 1-3. 

a) x < 2 

b) lim 1
n

n


   

c) x + y = y + x 

d) There exists a natural number x such that x < 2. 

e) For every real number x and every real number y, x + y = y + x. 

f) 1 < 2 

g) 2 + 3 = 3 + 2 

h) This sentence is false. 

 1.  Which of the above are statements? 

 2.  Identify the variables in each sentence. 

 3.  Which will become statements when the variables are replaced by numbers? 

Find the solution set of each sentence with indicated universal set. 

 4.   2 3x       {0, 1, 2, 3} 

 5.   | | 1 3x       {0, 1, 2, 3} 

 6.     1 2 0x x      {5, 6, 7} 

 7.     1 2 0x x       2, 1,0,1,2    

 8.   
2 2 1 0x x         
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 9.   
2 2 1 0x x         

10.  
22 3 1 0x x         

11.  
22 3 1 0x x       


  

12.  
22 3 1 0x x         

13.  
22 3 1 0x x        

14.  
22 3 1 0x x        

15.  
2 1 0x          

16.  
2 4

2
2x

x
x


        

Decide the truth value of each of the following. Refer to a calculus book where appropriate. 

Assume that x represents a real number, and f represents a real function. 

17.  For every real number x, 2 0.x    

18.  If x = 3, then x < 2. 

19.  If 
2( ) ,f x x  then ( ) 2 .f x x    

20.  If x = 0 or x = 1, then 2 .x x   

21.  For every natural number x, 2 .x x   

22.  There exists a natural number x such that 2 .x x   

23.  
2 | | .x x   

24.  If | | 3,x   then 3 3.x     

25.  Every rational number can be expressed as a ratio of two integers. 

26.  If ( ) | |,f x x  then f is continuous but not differentiable at x = 0. 

27.  The series   1

1
1

n

n
n

 


  is convergent but not absolutely convergent. 

28.  If a series is absolutely convergent, then it is convergent. 

29.  A series either converges or diverges. 
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30.  If a function is continuous, then it is differentiable. 

31.  1

0
lim 1
n

n


   

32.  For every real number x and every real number y, x + y = 0. 

33.  If a function is differentiable, then it is continuous. 

34.  There exists a real number x such that x < 2. 
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1.4     SENTENCE CONNECTIVES 

Conjunction. If P and Q are sentences, then the sentence ‘P and Q’ is called the conjunction of 

P and Q, symbolized 

 .P Q   

 For any statement there are just two possible truth values, true (T) or false (F). If P and Q 

are both true, then P Q  is true. If one or both of P and Q are false, then P Q  is false. The truth 

table below defines the truth values of P Q  for all possible truth value combinations of P and 

Q. 

 

              

T         T          T

T         F          F

F         T          F

F         F          F

P Q P Q

  

 EXAMPLES.    2 2 4 3 2 7       (False) 

                             is irrational 0     (True) 

Disjunction. If P and Q are sentences, then the sentence ‘P or Q’ is called the disjunction of P 

and Q, symbolized 

 .P Q   

Unlike conjunctions there are at least two uses of or in English.  

 One use is exclusive, meaning “one or the other but not both.” For example, the sentence 

Are you awake or asleep? 

cannot be answered yes because you cannot be both awake and asleep at the same time. 

 Another use is inclusive, meaning “and/or.” For example, the sentence 

Are you wearing a shirt or sweater? 

could be answered yes. This would mean the answerer was wearing either a shirt, a sweater, or 

both. 
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 The mathematician defines or to be inclusive; that is P Q  is true when P is true, Q is 

true, or both are true. P Q  is false only when P and Q are both false. The truth table for P Q  

is thus defined below. 

 

              

T         T          T

T         F          T

F         T          T

F         F          F

P Q P Q

  

EXAMPLES. “    2 2 4 3 2 5     ” is true because both are true. 

                       “     is rational  is irrational  ” is true because “  is irrational ” is true. 

Negation. A negation, or denial, of a sentence may be formed in many ways. For example, the 

negation of  

P:  2 is rational, 

is represented by each of the following: 

 ,P   

 It is false that 2 is rational, 

 2 is not rational, 

 2 is irrational. 

The truth table for negation is defined below. 

 

         

T              F

F              T

P P

  

There are other symbols, besides ~, for negations. For example, 

   means ,a b a b    

   means ,a b a b   and 

   means .a A a A    
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Conditional. If P and Q are sentences, the sentence 

If P, then Q 

is symbolized 

 .P Q   

The mathematician defines a truth table for P Q  just as he does for ,  ,  and   ; but the 

definition is not at all obvious. An example may help before we give the definition. Consider the 

sentence 

If I get an A in mathematics, then I will take the next course. 

Suppose a fellow student says this. When is he telling the truth and when is he lying? Examine 

the following four cases where 

P means “I will get an A in mathematics” 

and  

Q means “I will take the next course.” 

      1)   P (true): He gets an A in mathematics 

Q (true): He takes the next course 

      2)   P (true): He gets an A in mathematics 

            Q (false): He does not take the next course 

      3)   P (false): He does not get the A 

            Q (true): He takes the next course 

      4)   P (false): He does not get the A 

            Q (false): He does not take the next course 

In (1) it is reasonable to agree that the student was telling the truth; his claim is true. In (2) it is 

easy to agree that he lied, and his claim was false. In (3) you could not call him a liar since he 

takes the next course even though he did not get an A. In (4) you likewise could not call him a 

liar since he did not get the A and did not take the next course. 
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1)      T         T          T

2)      T         F          F

3)      F         T          T

4)      F         F          T

P Q P Q

 

(The numbers refer to the preceding explanation.) 

 The truth table definition for P Q  conforms to the previous example. Should you be 

troubled about the definition, be comforted by the fact that mathematicians struggled with it for a 

long time. Any more explanation would repeat an example like the one above. Here is one place 

in mathematics where, if you are troubled, the easiest way out is to accept the definition and go 

on. (In English, the if-then sentence is used only when there is some logical or causal connection 

between the antecedent and the consequent, but in symbolic logic it is used without any such 

limitations. For example, the sentence “if the moon is made of green cheese, then I have two 

eyes” is true, although such a sentence is hardly appropriate or sensible in spoken or written 

English.) 

The sentence P Q  is called a conditional with 

P the antecedent 

and 

Q the consequent. 

To summarize: A conditional is true when the antecedent is false or the consequent is true. A 

conditional is false only when the antecedent is true and the consequent is false. 

 In mathematics P Q  is encountered in many forms. You should be familiar with each. 

The following have the same meaning: 

 P Q , 

 If P, then Q, 

 P implies Q, 

 Q if P, P only if Q, 

 Q provided P, 

 Q whenever P, Q when P, 
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 P is a sufficient condition for Q, 

 Q is a necessary condition for P. 

(Memorize these) 

 One meaning of  

P Q  

is 

P is sufficient for Q. 

This can be explained via its truth table. When P is true and P Q  is true, then Q must be true. 

In other words, P being true is enough (is sufficient) to yield Q being true when P Q  is true. 

 Another meaning of 

P Q  

is 

Q is a necessary condition for P. 

This is also explained via the truth table for P Q . If P Q  is true and Q is false, then P must 

be false; that is, if Q is false, so is P. Q being false necessitates P being false. 

EXAMPLES. Translate to the form P Q . 

 a) A polygon has no diagonals only if it is a triangle. 

Using the following translations: 

  P: A polygon has no diagonals, 

  Q: It is a triangle, 

the sentence translates to a sentence of the type P Q , or 

If a polygon has no diagonals, then it is a triangle. 

 b) The function f is continuous when it is differentiable. 

Using the following translations: 

                                            
 The moral of this story is “Watch your P’s and Q’s!” 
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  P: A function is differentiable, 

  Q: A function is continuous, 

the sentence translates to the type P Q , or 

If a function is differentiable, then it is continuous. 

 Experience at recognizing sentences with “If…then” structure, though not stated as such, 

will aid mathematical reading and proof. 

Exercise Set 1.4 

Find the truth value. 

  1.   
1

lim 1  is rational
n

e
n

 
  

 
   

  2.     2For every , | | 4 3x x x     

  3.  (π is rational) (π is real) 

  4.  (π is an integer) (π is a natural number) 

  5.     sin cosJ xdx x C       

  6.  Let an infinite series 
1

;nn
S u




  (S converges) (S diverges) 

Write four different representations of the negations of each. 

  7.  P: 2 = 3 

  8.  P: e is irrational 

Find the truth value of each. 

  9.  2 ≠ 3 

10.  ~ (e is irrational) 

Give an expression for each of the following which does not involve a negation symbol. 

11.  ~ (x < y) 

12.  ~ (x > y) 
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13.  ~ (3 ≤ y) 

14.   2 1z x    

Find the truth value. 

15.  2 < 1   2 < 3 

16.  3 > 4   6 < 5 

17.  
1

1

2 4
n

n






   converges. 

18.  
2

1

2 0
n

n






   converges. 

Translate each sentence to the type “If P, then Q” and .P Q  Identify the antecedent and the 

consequent. 

19.  There is no factorization of n whenever n is prime. 

20.  
1

n

n

u




  converges only if lim 0.n
n

u


   

21.  | | 1x   implies that  lim .
1

n

n

a
a ar ar

r
   


  

22.  x is an integer if it is a natural number. (Use set symbols , . ) 

23.  If 
1

n

n

u




  converges, so does 
1

.n

n

u




   

24.  The convergence of 
1

n

n

u




  is sufficient for the convergence of 
1

.n

n

u




   

25.  a  is a necessary condition for .a   

26.  An integer is a rational number. Hint: Use a variable x and set symbols; e.g., , .   

27.  Integers are rationals. 

28.  A necessary condition for two lines in a plane 1 2 and l l  to be parallel is that 1 2 .l l    

29.  A square is a rectangle. 
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30.  Triangles are polygons. 

31.  3x = 3y since x = y. 

32.  
2( ) 2  when ( ) .f x x f x x     

33.  Squares are not triangles. 
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1.5     BICONDITIONALS AND COMBINATIONS OF CONNECTIVES 

Biconditional. A sentence of the type 

    P Q Q P     

is called a biconditional, symbolized 

 .P Q   

When P and Q are sentences, the truth table for P Q  is 

 

              

T         T          T

T         F          F

F         T          F

F         F          T

P Q P Q

  

and is derived from the truth tables for   and   as follows. We first set up all combinations of 

truth values for P and Q. Then we use these to find truth values for ,  ,P Q Q P   and finally 

   P Q Q P    which is .P Q   

 

                          or 

T         T          T              T                                 T

T         F          F              T                                 F

F         T   

P Q P Q Q P P Q Q P P Q     

       T              F                                 F

F         F          T              T                                 T

  

Thus, P Q  is true when P and Q are both true or both false. 

 In mathematics P Q  is encountered in many forms. The following have the same 

meaning: 

 P Q , 

 P is equivalent to Q, 

 P is a necessary and sufficient condition for Q, 

 Q is a necessary and sufficient condition for P, 

 P if and only if Q, 
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 Q if and only if P, 

 P iff Q (“iff” is an abbreviation for “if and only if”), 

 If P, then Q and conversely, 

 If Q, then P and conversely. 

 (Memorize these) 

For example, 

5x = 15 if and only if x = 3 

would be translated by 

 P: 5x = 15 

 Q: x = 3 

to P Q . 

A meaning of P Q  is  

“P is a necessary and sufficient condition for Q.” 

This is explained via the definition of P Q :    .P Q Q P    If P is a necessary condition 

for Q, then .Q P  If P is a sufficient condition for Q, then .P Q   

Combination of Connectives. Combinations of ~,  ,  ,  ,  and      often occur. A facility at 

recognizing them is essential for mathematical reading and proof. 

EXAMPLE. We could translate 

If p is prime, then if p is even p must be smaller than 7 

as follows: 

 P:  p is prime, 

 Q:  p is even, 

 R:  p must be smaller than 7. 

The translated sentence would be 

 ;P Q R    
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that is, 

 P implies that Q implies R. 

EXAMPLE. Translate 

“If a is perpendicular to b and b is perpendicular to c, then a is parallel to c.” 

Let 

 P:  a is perpendicular to b, 

 Q:  b is perpendicular to c, 

and 

 R:  a is parallel to c. 

Then the translated sentence is 

   

EXAMPLE. Translate 

“If lines l and m are not parallel, then l and m intersect.” 

Let 

 P:  lines l and m are parallel, 

 Q:  l and m intersect, 

then the translated sentence is 

   

or not P implies Q.  You could have let 

 R:  lines l and m are not parallel, 

then the translated sentence would have been  The first translation is more desirable 

because it reveals more logical structure. Such structure will become important when we study 

proof. 

Exercise Set 1.5 

Find the truth value. 

  .P Q R 

P Q

.R Q
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  1.    

  2.  π is real  π is irrational 

  3.  2 is real   2 is irrational 

  4.  2 is real   2 is rational 

  5.  e is rational   e is an integer (Note: e = 2.718…; it is a constant symbol rather than a 

variable.)  

Translate to a sentence of the type .P Q   

  6.  x = 5 if and only if 2x = 10 

  7.  x  is a necessary and sufficient condition for x p q  where ,  ,  and 0.p q q     

  8.  A necessary and sufficient condition for the sequence  
1n n

x



 to have a limit is that the 

absolute value n mx x  approaches 0 as m and n go to infinity. 

  9.  ab = 0 if and only if a = 0 or b = 0. 

10.  If a triangle is isosceles, then it must have two sides equal and conversely. 

11.  2 1 0x   is equivalent to 1 2.x    

12.  f is continuous if and only if f is differentiable.  

Translate using ,  ,  ,  ,  and .      

13.  If p and q are integers and 0,q   then p q  is a rational number. 

14.  If ABC is a triangle and ABC is isosceles, then ABC has two equal sides. 

15.  If ,  ,  ,  and a b c x are real numbers, 
2 20,  0,  and 4 0,a ax bx c b ac      then the roots of 

2 0ax bx c    are real and equal. 

16.  If a series 
1 nn
u



 is convergent, then lim 0.n
n

u


   

17.  If nu  does not approach 0 as ,n   then the series 
1 nn
u



  cannot be convergent. 

18.  If a is an integer, then a is even or a is odd. 

19.  f is differentiable and g is differentiable only if g f  is differentiable. 

2 1 2 3  
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20.  If u and v are differentiable functions of x, uv is also differentiable and 

  .
d dv du

uv u v
dx dx dx

   
    

   
  

21.   or x J x   is a necessary and sufficient condition for .x   

22.  0 or x x  is equivalent to .x   

23.    iff  and x A B x A x B      

24.    iff  or x A B x A x B      

25.  x A  is a necessary and sufficient condition for .x A   
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1.6     QUANTIFIERS 

Sentences involving the phrases “For every…” and “There exists…” also play an important role 

in the structure of mathematical sentences. For example, the sentences 

 For every x, x + 0 = x 

and 

 There exists an x such that 2 2x    

express certain properties of the real number system.  

The Universal Quantifier. The symbol , called the universal quantifier, symbolizes phrases 

such as “For each,” “For all,” and “For every.” A sentence such as 

 For every x, P(x) 

translates to  

( ),  or ,  ( ).xP x x P x    

The following have the same meaning: 

    ,x  x is an integer ,x    

    For every x, if x is an integer, then ,x   

    For all x, if x is an integer, then ,x   

    For each x, if x is an integer, then ,x   

    Every integer belongs to ,   

    Every integer is a rational number. 

In some mathematics books a sentence like 

If x is an integer, then x  

is understood to mean  

,x  x is an integer .x    

That is, the universal quantifier is understood and not written. This is pointed out to enable you 

to interpret sentences you read since each author has his own style of writing.  
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 As another example, in trigonometry the sentences  

 2 2sin cos 1u u    

and  

 2 2sin cos 1u u    

mean  

 
2 2, sin cos 1,u u u     

where the quantifier refers to the set of real numbers. 

The Existential Quantifier. The symbol ,  called the existential quantifier, symbolizes 

phrases such as “There exists,” “There is at least one,” “For at least one,” and “Some.” A 

sentence such as  

There exists an x such that P(x) 

translates to  

( ),  or ,  ( ).xP x x P x    

The following have the same meaning: 

    ,x  x is a natural number, 

    There exists an x such that x is a natural number, 

    Some number is natural, 

    There is at least one natural number. 

It is important to realize that   means “There exists at least one”; there is nothing to prevent 

there being more. For example, compare the sentences 

 ,  0x x    

and 

 ,  sin 1.x x    

For  

 ,  0,x x    

we know there is only one x such that x = 0, but for 
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 ,  sin 1,x x    

we know there is at least one, in fact many numbers x such that sin x = 1. 

Combinations of Quantifiers. Quantifiers may appear together. Consider the following 

examples. The sentence 

 For every x and for every y, x + y = 0 

translates to 

 ,  0.x y x y      

The sentence 

 For every x there exists a y such that x + y = 0 

translates to 

 ,  0.x y x y      

The sentence 

 There exists an x such that for every y, x + y = 0 

translates to 

 ,  0.x y x y      

The sentence 

 There exists an x and there exists a y such that x + y = 0 

translates to 

 ,  0.x y x y      

 Quantifiers may not appear together. For example, the sentence 

 For every x, if is even, then there exists a y such that x = 2y 

translates to 

   is even , 2 .x x y x y     

Truth Values of Quantified Sentences. Quantifiers refer to a universal set. Sometimes the 

universal set is pointed out, but sometimes it must be inferred from context. For example, 

consider the sentence 
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 ,   is a triangle  is a polygon.x x x    

The universal set might be the set of figures in the plane, or could be the power set of points in 

the plane. In calculus, the quantifiers usually refer to such universal sets as the set of real 

numbers, the set of positive real numbers, or the set of real functions.  

 Henceforth, we consider only nonempty universal sets. (The empty set is not very 

interesting to study.) 

 Definition. a) The sentence ( )xP x  is true iff the solution set of P(x) equals the universal 

set (or, for every replacement of x by a member u of the universal set, P(u) is true). 

 b) The sentence ( )xP x  is false iff the solution set of P(x) does not equal the universal 

set (or, there exists a replacement u in the universal set such that P(u) is false). 

EXAMPLES. 

 

 

Sentence                         Universal            Solution             Truth

( )                                Set               Set of ( )          Value

,  0                             0  

xP x P x

x x



   

   

                   0                     T

,  0                            0,1                   0                      F

,  1                                                                     

x x

x x x

 

  

 

2

2

 T

,  2 3 1 0                                                          F

,  2 3 1 0                               1                     F

x x x

x x x 

    

    

  

 Definition. a) The sentence ( )xP x  is true iff the solution set of P(x) is nonempty (or, 

there exists a replacement u such that P(u) is true). 

 b) The sentence ( )xP x  is false iff the solution set of P(x) is empty (or, for every 

replacement of x by a member u of the universal set, P(u) is false). 

 

 

 

 

EXAMPLES. 
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Sentence                         Universal            Solution             Truth

( )                                Set               Set of ( )          Value

,  0                             0  

xP x P x

x x



   

   

                   0                     T

,  0                            0,1                   0                     T

,  1                                                                      

x x

x x x

 

  

 

2

2

T

,  2 3 1 0                                                          F

,  2 3 1 0                               1                    T

x x x

x x x 

    

    

  

Exercise Set 1.6 

Translate to logical symbolism. 

  1.  Every triangle is a polygon. 

  2.  For every x, if x is a natural number, then x is an integer. 

  3.  For each natural number x, x is even or x is odd. 

  4.  There exists an x such that x is prime and x is even. 

  5.  There is an x such that 
1

lim .
n

x
n

   

  6.  There is an X such that    
2

2 and ( ) 2 .
n

n X f x dx n f X      

  7.  There exists a p and there exists a q such that p·q = 32. 

  8.  For every x there exists a y such that x < y. 

  9.  There exists a y such that for every x, x + 0 = y. 

10.  There exists an x and there exists a y such that yx  is irrational. 

11.  For every x and for every y, x + y = y + x. 

12.  There exist an x and y such that 
2 .x y   

13.  For every x and y, xy = yx. 

14.  1 < 2   there exists an x such that x < 2. 

15.  For every x, x k  implies that there is a y such that .y k   



35 
 

Translate using ,  ,  ,  ,  ,  ,      and the following symbols for sentences. 

 D(f):  f is differentiable  E(x):  x is an equilateral triangle 

 C(f):  f is continuous   A(x):  x is an equiangular triangle 

 S(x):  x is a square   V(x):  x is even 

 R(x):  x is a rectangle   O(x):  x is odd 

      L(x):  x is isosceles 

16.  Every differentiable function is continuous. 

17.  There are continuous functions which are not differentiable. 

18.  All equilateral triangles are equiangular and some equiangular triangles are equilateral. 

19.  If every number which is even is not odd, then some odd numbers cannot be even. 

20.  If all equilateral triangles are isosceles, then some isosceles triangles are not equilateral. 

21.  All squares are rectangles. 

For each sentence of the type ( )xP x  and indicated universal set find the solution set of P(x), 

then the truth value of ( ).xP x   

       Sentence                                 Universal         Solution            Truth

       ( )                                        Set            Set of ( )         Value

22.  ,  0    

xP x P x

x x



 

2

                                   

23.  ,  0                                       

24.  ,  0                                     

25.  ,  2 1 0                         

26.  ,  0 0

x x

x x

x x x

x x x



 

 

   

    

  2

                      

27.  ,  1 1 1               

x

x x x x    

  

For each sentence of the type ( )xP x  and indicated universal set find the solution set of P(x), 

then the truth value of ( ).xP x   
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       Sentence                                Universal         Solution            Truth

       ( )                                        Set            Set of ( )         Value

28.  ,  0     

xP x P x

x x



 

2

                                  

29.  ,  0                                       

30.  ,  0                                     

31.  ,  2 1 0                         

32.  ,  0 0

x x

x x

x x x

x x x x



 

 

   

    

  2

                      

33.  ,  1 1 1               x x x x    

  

34.  Compare truth values of the sentences ( ) and ( )xP x xP x   encountered in the previous 

examples and exercises. What can you conjecture about the truth value of ( ) when ( )xP x xP x   

is true? 
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1.7     TRUTH VALUES OF MORE COMPLICATED QUANTIFIED SENTENCES 

The sentence ( , ).x yP x y   Suppose P(x, y) is a sentence with two variables x and y. The 

sentence  

  ,x yP x y    

is true iff for every replacement of x and y by members a and b of the universal set, 

  ,P a b  is true. 

EXAMPLE. The sentence 

 ,  x y x y y x       

with universal set {0, 1, 2} is true. Note that each of the following is true: 

 0 + 1 = 1 + 0   1 + 2 = 2 + 1   2 + 2 = 2 + 2 

 1 + 0 = 0 + 1   2 + 1 = 1 + 2   2 + 0 = 0 + 2 

 0 + 2 = 2 + 0   1 + 1 = 1 + 1   0 + 0 = 0 + 0 

EXAMPLE. The sentence 

 ,  x y y x     

with universal set {0, 1, 2} is false. When y is replaced by 2 and x by 1 the sentence 

 2 < 1 

is false. 

The sentence  , .x yP x y   The sentence 

  ,x yP x y    

is true iff there is at least one replacement b for x and at least one replacement c for y such that  

 P(b, c) is true. 

EXAMPLE. The sentence 

 ,  3 2x y x y       

with universal set  is true. When x is replaced by 5 and y is replaced by 4, the sentence 
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 5 3 2 4     

is true. 

EXAMPLE. The sentence 

 ,  2x y x y     

with universal set  is false. There are no replacements of x and y by integers b and c which 

make the sentence 

 2b c    

true. We prove this later. 

The sentence  , .x yP x y   The sentence 

  ,x yP x y   

is true iff for every replacement of x by a member of the universal set b, 

  ,yP b y   

is true. 

EXAMPLE. The sentence 

 ,  0x y x y      

with universal set  1,0,1  is true. Note: 

 

,  0 0                            (True; 0)

,  1 0                             (True; 1)

,  1 0                         (True; 1)

y y y

y y y

y y y

   

    

    

  

EXAMPLE. The sentence 

 ,  x y y x     

with universal set {0, 1, 2} is false. Note: 

 

,  0                                  (False; solution set of 0 is )

,  1                                   (True; 0)

,  2                                  (True; 0 or 1)

y y y

y y y

y y y
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The sentence  , .y xP x y   The sentence 

  ,y xP x y   

is true iff there exists a replacement c for y such that 

  ,xP x c   

is true. Thus the same c makes the sentence 

 P(b, c) 

true for every element b in the universal set. 

EXAMPLE. The sentence 

 ,  y x x y x      

with universal set {0, 1, 2} is true because the sentence 

 ,  0x x x     

is true. 

EXAMPLE. The sentence 

 ,  y x y x     

with universal set {0, 1, 2} is false because each of the sentences 

 ,  0x x    

 ,  1x x    

 ,  2x x    

is false; that is, there is no replacement b for y which makes the sentence 

 ,  x b x    

true. 

 There is an important distinction between the sentences  

  ,x yP x y    

and 
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  , .y xP x y    

If the sentence  

  ,  is truex yP x y    

there is a dependence asserted between y and x. That is, the y depends on the x. If the sentence 

  ,  is truey xP x y    

there is no dependence of y on x. The same y makes P(x, y) true for all x.  

 Later we will prove that every sentence of the type 

    , ,y xP x y x yP x y      

is true. 

Exercise Set 1.7 

Decide the truth value of each sentence with indicated universal set.  

  1.  The universal set is {0, 1, 2}. 

 a)  2 1 ,  0x x        b)  ,x y y x     

 c)  ,y x y x       d)  , 1y x y x      

 e)  ,x y y x       f)  ,y x y x     

 g)  , 0x y x y        h)  ,x y x y y x       

 i)  , 5 2x y x y       

  2.  The universal set is .  Answer (a) through (i) above. Compare your answers to those of 

Exercise 1. 

  3.  The universal set is .  Answer (a) through (i) above. Compare your answers to those of 

Exercises 1 and 2. 
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  4.  The universal set is the set of all real functions.  

 a)    is differentiablef f   

 b)    is differentiable  is continuousf f f    

 c)    is continuous  is differentiablef f f    

 d)    is continuous  is not differentiablef f f    

  5.  The universal set is the set of all infinite sequences  nu  of real numbers. 

 a)     ,  is convergent  is convergentn n nu u u     

 b)        ,  is convergent  is divergentn n nu u u    

 c)     , lim 0 does not converge . Explain.n n n
n

u u u


     

  6.  Consider the sentence x < y with universal set .   

 a)  Decide the truth value of , .x y x y     

 b)  Decide the truth value of , .y x x y     

 c)  Decide the truth value of , , .x y x y y x x y        

 d)  Is every sentence of the type    , ,x yP x y y xP x y     true? Why? 

 e)  Decide the truth value of , , .y x x y x y x y        

 f)  Use truth values for  ,y xP x y   and  ,x yP x y   in universal sets previously 

considered to compute truth values for    , , .y xP x y x yP x y     Does it seem that every 

sentence of the type    , ,y xP x y x yP x y     is true? 

  7.  Read the excellent article: E. A. Kuehls, “The Truth-Value of   , , , :P x y   A Graphical 

Approach,” Mathematics Magazine, Vol. 43, Nov. 1970, p. 260. 

  8.  Let P(x): x is irrational 

             Q(x): x is rational 
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       Decide the truth value of each of the following with universal set .   

 a)     x P x Q x      

 b)   xP x   

 c)   xQ x   

 d)     xP x xQ x    

 e)         x P x Q x xP x xQ x             

 f)  Is every sentence of the type        x P x Q x xP x xQ x            true? 

  9.  By a procedure similar to Exercise 8 decide if every sentence of the type 

       xP x xQ x x P x Q x           is true. 
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1.8     REASONING SENTENCES 

Mathematicians assume a certain class of sentences to be true before they ever prove any 

theorems in a mathematical system. We call these reasoning sentences or rules of reasoning. 

These rules are assumed by the mathematician, and accordingly could be called reasoning 

axioms. 

Tautologies. An important class of these reasoning  sentences are known as tautologies. A 

tautology is a sentence which is true no matter what the truth value of its constituent parts. (A 

review of truth tables for ,  , , ,      would be helpful at this time.) 

EXAMPLE. The sentence 

  P P Q    

is a tautology, where P and Q represent arbitrary mathematical sentences. We show this with a 

truth table. Truth values are obtained by successively breaking the sentence up into its 

constituent parts and computing truth values. Hence 

 

                                

T          T              T                       T

T          F              T                       T

F          T              T                       T

F     

P Q P Q P P Q  

     F              F                       T

 

 Note that the truth values for P Q  were determined first and listed in column three. 

Then columns one and three were used to determine column four. 

EXAMPLE. Show    P Q Q P    is a tautology. 

 

                                                              

T          T           F              F                 T                         T                                   

P Q P Q P Q Q P P Q Q P    

  T

T          F           F              T                 F                         F                                     T

F          T           T              F                 T                         T                                     T

F          F           T              T                 T                         T                                     T
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Related to every conditional 

 P Q   

is another conditional 

 Q P   

called its contrapositive. We have just shown that the two are equivalent; that is, 

   .P Q Q P     

Exercise Set 1.8 

Use truth tables to determine which of the following are tautologies. 

  1.   P P Q Q         (Modus ponens) 

  2.       P Q Q R P R           (Law of Syllogism; this truth table requires 8 different 

combinations of truth values at the outset) 

   

   

3.  
 
4.  

P Q P Q

P Q P Q

   


   

      (De Morgan’s Law) 

  5.     P Q P Q     

  6.     P Q P Q     

  7.   P Q P    

  8.  P P   

  9.     P Q P Q     

10.     P Q Q P     

11.     P Q Q P     

12.     P Q P Q     

13.  P P   
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14.       P R P Q R Q         

 

     

15.  

16.  

P R R P

P Q R R P Q

     


        

      (Proof by Contradiction) 

17.  P P   
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1.9     VALID ARGUMENTS 

More Tautologies. The tautologies in the preceding exercise set are quite useful. Below are 

several other useful tautologies. 

 

   

         

     

   

   

   

1 1 2 1            (Law of Syllogism)

           (Proof by Cases)

         (Commutative Laws)

n n n

P P

P P

P Q R P Q R

P S S S S S S R P R

P R Q R P Q R

P Q Q P

P Q Q P

P R Q P R Q







          

           

           

   


   

         

   

   

     

     

     1

          (Associative Laws)

          (Distributive Laws)

n

P Q R P Q R

P Q R P Q R

P Q R P Q P R

P Q R P Q P R

P Q Q Q P Q



          


          

           


           

          

LOGICAL AXIOM 1. Every tautology is a rule of reasoning. 

 The preceding tautologies are not all there are. If you want to make a deduction based on 

a sentence, check its truth table. If it is a tautology, use it. Tautologies provide lots of reasoning 

theorems before we ever start deduction within a mathematical system. 

 There are actually two branches of formal logic: the statement calculus, involving 

statements and reasoning by tautology, and the predicate calculus, involving quantified 

sentences. In this text we are studying logic informally, with the goal being to give you a 

working knowledge of logic. Thus, we will not go into these branches in great detail. From the 

predicate calculus we get another collection of reasoning sentences, some of which are listed in 

Logical Axiom 2. These cannot be verified by tautology. 

LOGICAL AXIOM 2. Let U be a universal set. Each of the following is a rule of reasoning: 

 

       

   

   

(1)  , ,

(2)  ,  for any ,

(3)  ,  for some .

x P x Q x xP x xQ x

xP x P u u U

xP x P u u U
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 An argument is an assertion that from a certain set of sentences 1, , nS S  (called 

premises or assumptions) one can deduce another sentence Q (called a conclusion or inference). 

Such an argument will be denoted 

 1 , , nS S  |– Q 

Arguments are either valid (correct) or invalid (incorrect). 

Definition. 1 , , nS S |– Q is a valid argument iff  1 nS S Q    is a rule of reasoning. 

Rule of Substitution. Suppose .P Q  Then P and Q may be substituted for one another in any 

sentence.  

EXAMPLE.  

 

 

   

P Q

R S Q

R S P



 

  

  

You may insert a tautology into any set of premises. 

EXAMPLE. 

    

                                   Premise

      Tautology

P Q

P Q Q P

Q P



  

 

  

EXAMPLE. ,  P P Q  |– Q is valid because  P P Q Q      is a tautology. 

EXAMPLE. ,Q P Q  |– P is not a valid argument because  Q P Q P      is not a 

tautology. (Such an inference might be referred to as “modus humorous.”) 

EXAMPLE.  xP x |– P(u) for any ,u U  a universal set, is a valid argument by part (2) of 

Logical Axiom 2. 

Some types of valid arguments are used so much we give them special names. 

Rule of Modus Ponens. From any conditional P Q  and P, one may conclude Q; that is, P, 

,P Q  therefore Q. This is a valid argument and can be denoted two ways. 

 a)  ,P P Q |– Q    
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b)       

                   

      

P Q

P

Q





  

This rule is based on the tautology 

   .P P Q Q       

When using modus ponens the form of the sentence is important. 

 

1.     (         ) [         ]

2.     (         )                 

3.      [         ]





  

Having placed sentences in the parentheses (the same sentences must be in both sets of 

parentheses) and the brackets, and assuming sentences 1 and 2 true, we deduce sentence 3. 

EXAMPLE.  If ( ) sin ,  then ( ) cos

                      ( ) sin                                  

                      ( ) cos

f x x f x x

f x x

f x x

 



 

 

EXAMPLE.  5 only if 2 10

                      5                        

                      2 10

x x

x

x

 



 

 

   

EXAMPLE.  Deduce  from the premises  and .

1.  
                         Premises

2.                                

                      3.         Tautology 

                  4

P Q P Q

Q

P Q

P Q Q P






 

  

 .  ,  by modus ponens on 2 and 3Q P

 

                      1.  

                      4.                    

                  5.  ,  by modus ponens

Q

Q P

P





 



49 
 

 EXAMPLE.  Deduce  from the premises , ,  and .

1.                          

                      2.                                     

3.                                        

S S H H I I

S H

H I

I

 

 


 



   

Premises

                       4.              Tautology

                   5.  ,  by modus ponens on 2 and 4

                       5.  

                       3.                      

H I I H

I H

I H

I

  

 



   

             

                   6. , by modus ponens

                       1.  

                       7.              Tautology

                   8.  ,  by modus ponens

             

H

S H

S H H S

H S





  

 

           8.  

                        6.                        

                       ,  by modus ponens

H S

H

S





  

Exercise Set 1.9 

Complete. 

  1.  3 15 if 5

        5               

                      

x x

x

 





  

  2.  P, P Q  |– ___________ 

 

  3.                                 Premise

                            Tautology

       

P

P

P Q



 

  

Determine the validity. 

  4.   P Q  |– P 

  5.  P Q  |– ~P 
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  6.    ,P Q R P Q    |– R 

  7.    ,P R Q P R    |–  Q 

  8.  ,P P Q  |– Q 

  9.  , ,P R Q P R   |– ~Q 

10.  ,P Q R Q   |– R→ ~P 

11.  P Q  |– Q 

12.  P Q  |– Q → P (Q P  is the converse of P Q ) 

13.  P Q  |– 𝑃⌵𝑄 

14.  P Q  |– P Q   

15.  ( )xP x |– P(u) for some .u U  U is a universal set. 

16.   ( ) ( )xP x Q x   |– ( ) ( )xP x xQ x   
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1.10     CONTRAPOSITIVES 

Recall that the contrapositive of P Q  is .Q P  The two sentences are equivalent. 

Contrapositives reveal added insight. 

EXAMPLE. In calculus the sentence 

 If 
1

n

n

u




 converges, then lim 0n
n

u


   

is true. If we translate the sentence 

 P:  
1

n

n

u




 converges 

 Q:  lim 0n
n

u


   

then P Q  is true. Its contrapositive is also true because    P Q Q P    is a 

tautology and, by the rule of substitution, Q P  is true. That is, 

 
1

If lim 0,  then  divergesn
n

n

u





    

is true. Recall that to check the convergence of a series you determine if the nth term converges 

to zero. If it does not, you know the series cannot converge. The contrapositive justifies this. 

EXAMPLE. In the system of integers the sentence 

 x odd → x2 odd 

is true (for any given x). Thus the contrapositive 

 x2 even (not odd) → x even (not odd) 

is true. 

Exercise Set 1.10 

  1.  Form the contrapositive of the sentence “If ( ) sin ,f x x then ( ) cos .f x x  ” Is this new               

sentence true? Why? 

Form the contrapositive of the following. Use →. 

  2.  x is odd is a necessary condition for x not being even. 
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  3.  x is rational is a sufficient condition for x to be real. 

  4.  If f is differentiable, then f is continuous. 

  5.  x A x B     

  6.  x2 odd → x odd 

  7.  x2 even → x even 

  8.  x is even only if x2 is even 

  9.  A B A     

10.   0 | | 0x x          

11.  ( ) ( )f x f y x y     

12.  ( ) ( )x y f x f y     

13.  ( ) ( )x y f x f y     

14.  
1 1

 converges  convergesn n

n n

u u
 

 

    

 

 

 

 

 

 

 

 

 

 

 

 



53 
 

1.11     NEGATIONS 

Negations of ( )xP x  and ( )xP x . It is often useful to express the negations of sentences of the 

type ( ) and ( )xP x xP x   in other forms. 

THEOREM 1. Every sentence of the type 

 ( ) ( )xP x x P x     

is true. 

Proof. We prove that ( )xP x  and ( )x P x  are equivalent by showing that their truth 

values agree.  

 Suppose ( )xP x  is true. Then ( )xP x  is false; so there exists a replacement u 

in the universal set such that P(u) is false. Then ( )P u  is true for this replacement u. 

Thus,  

 ( ) is true.x P x   

 Suppose ( )xP x  is false. Then ( )xP x  is true, so for every replacement u P(u) 

is true. Hence, for every replacement u, ( )P u  is false. Thus 

 ( ) is false.x P x   

Therefore, ( )xP x  and ( )x P x  are equivalent.   

(Henceforth,  will denote the completion of a proof.) 

Applying the tautology    P Q P Q    to the previous theorem we get 

 ( ) ( ).xP x x P x     

We have proved the following theorem. 

THEOREM 2. Every sentence of the type 

 ( ) ( )xP x x P x     

is true. 

Using Theorems 1 and 2 we can prove the following theorems. 
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THEOREM 3. Every sentence of the type 

 ( ) ( )xP x x P x    

is true. 

Proof. By Theorem 2, ( ) ( ),x P x x P x   where we substitute ( ) for ( ).P x P x  

Now by a tautology we know ( ) ( ).P x P x  Hence, ( ) ( ).x P x xP x    Thus 

we have ( ) ( )xP x x P x   by the Rule of Substitution.   

THEOREM 4. Every sentence of the type 

 ( ) ( )xP x x P x     

is true. 

 Proof. Left as an exercise. 

We have established the rules: 

 1)  ( ) ( )xP x x P x     

 2)  ( ) ( )xP x x P x     

 3)  ( ) ( )xP x x P x    

 4)  ( ) ( )xP x x P x     

The usefulness of these rules will be realized when doing proofs by contrapositive and by 

contradiction.  

Simplified Negations. Moving the negation symbol past the quantifiers of a sentence provides a 

more meaningful, simplified translation of the negation. 

EXAMPLE. A simplified negation of  

 , 2y x xy     

is 

 , 2.y x xy     

To show this notice that 
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, 2 , 2,  by (3)

, 2 ,  by (1)

y x, 2,  by substituting 2 for 2

y x xy y x xy

y x xy

xy xy xy

     

  

    

  

 Perhaps you have discovered that forming a simplified negation which begins with a 

series of quantifiers amounts to changing each existential quantifier to a universal quantifier and 

vice versa and moving the negation symbol to the right of the quantifiers. 

EXAMPLE. A simplified negation of 

 ,x y z xy z      

is 

 , .x y z xy z      

 Further simplifications of negations can be formed using tautologies. 

EXAMPLE. A simplified negation of 

  ( ) ( )x P x Q x    

is 

  ( ) ( ) .x P x Q x    

This is shown as follows. 

 
   

     

( ) ( ) ( ) ( ) ,  by (3)

( ) ( ) ,  by the tautology  

x P x Q x x P x Q x

x P x Q x P Q P Q

   

    
  

EXAMPLE. A simplified negation of 

  ( )x y P x y x      

is 

  ( ) .x y P x y x      

This is shown as follows. 

 
   

     

( ) ( )

( ) ,  by the tautology 

x y P x y x x y P x y x

x y P x y x P Q P Q
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More on the Utility of Negations. Quantifiers within the same sentence can refer to different 

universal sets. The universal sets can be described within the sentence; for example, 

 2

 positive real nos.

0,
U U

n x n x
 

       

The rules for negation still hold; that is, 

 
2 20, 0, .n x n x n x n x            

 Suppose we have a complicated sentence as in the following definition. 

Definition. A is the limit of the sequence  
1n n

a



 iff for each 0   there exists a natural number 

m such that for every n > m, .na A     

EXAMPLE.  

a)  Translate the previous definition to logical symbolism. 

      A is the limit of  
1

0 , .n nn
a m n m a A 




          

b)  Form a simplified negation of the sentence. 

      A is not the limit of  
1

0 ,n nn
a m n m a A 




        . 

 Now if we wanted to prove that A is not the limit of  
1n n

a



 we know what we must 

show. 

 A knowledge of logic helped in three ways: 

 1)  It helped translate a complicated sentence into more meaningful symbolism. 

 2)  It enabled us to find a negation of the sentence. 

 3)  With this negation, we knew what had to be shown to prove the first sentence false. 

 As another example consider the definition of an increasing function. 

Definition. A function f is increasing iff for every x and for every y, if ,x y  then ( ) ( ).f x f y   
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EXAMPLE.  

a)  Translate the previous definition to logical symbolism. 

     A function f is increasing  ( ) ( ) .x y x y f x f y       

b)  Form a simplified negation of the sentence. 

     A function f is not increasing  ( ) ( ) .x y x y f x f y       

EXAMPLE. The function 
2( )f x x  is not increasing. When 2x    and 1,y    

 ,x y   

 ( ) 4,f x    

 ( ) 1,f y    

and 

 ( ) ( ).f x f y   

Counterexamples. To prove a sentence of the type 

 ( )xP x   

false, one could try to prove 

 ( )x P x   

true. This is referred to as “providing a counterexample.” Thus, the function 
2( )f x x  of the 

previous example is a counterexample to the sentence 

 Every function is increasing. 

Exercise Set 1.11 

Form a simplified negation. 

  1.  , 0 ( )x x Q x     

  2.  , 0x y z q j x y z q j            

  3.   P Q R    
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  4.  ,x y z xz y      

  5.   | | | ( ) ( ) |x x c f x f c             

  6.  
mn m m n a a             

  7.     x y J x y J        

  8.   P Q R    

  9.  x A x B     

10.  x A x B     

11.   1 nP P Q     

12.  P Q   

13.  The Archimedean Property. For every two positive real numbers a and b there exists an 

n  such that na > b. 

For each definition in Exercises 14-28 

 a)  express the defining sentence on the right in logical symbolism; 

 b)  express the simplified negation of the defining sentence in logical symbolism. 

14.  A function  f  is even iff for every x, ( ) ( ).f x f x    

15.  A function  f  is odd iff for every x, ( ) ( ).f x f x     

16.  A function  f  is constant iff for every x and for every y, ( ) ( ).f x f y   

17.  A function  f  is periodic iff there exists a p > 0 such that for every x, ( ) ( ).f x p f x    

18.  A function  f  is decreasing iff for every x and for every y, if ,x y  then ( ) ( ).f x f y   

19.  A function  f  is strictly increasing iff for every x and for every y, if x < y, then ( ) ( ).f x f y   

20.  A function  f  is strictly decreasing iff for every x and for every y, if x < y, then 

( ) ( ).f x f y   

21.  A function  f  is one-to-one iff for every x and for every y, if ( ) ( ),f x f y  then x = y. 
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22.  A function  f  from A to B is onto iff for every y B  there exists an x A  such that 

( ) .f x y   

23.  A function  f  has a limit L at 0x  iff for every x and for every 0,   there exists a 0   such 

that ( )f x L    whenever 00 .x x      

24.  A function  f  is bounded iff there exists an M such that for every x, ( ) .f x M   

25.  A function  f  is continuous at 0x  iff for every x and for every 0   there is a 0   such 

that if 0 ,x x    then  0( ) .f x f x     

26.  A function  f  is continuous on a set E iff for any x in E and 0,   there exists a 0   such 

that ( ) ( )f x f y    whenever y is in E and .x y     

27.  A function  f  is uniformly continuous on a set E iff for any 0,   there exists a 0   such 

that ( ) ( )f x f y    whenever x and y are in E and .x y     

28.  A sequence  
1n n

a



 is Cauchy iff for every 0,   there exists a positive integer 0n  such that 

n ma a    whenever m and n are greater than 0.n   

Find counterexamples for each of the following. 

29.   
1

1

,  convergesn nn
n

u u







 
  

 
   

30.   
1

1

, lim 0  convergesn n nn n
n

u u u




 


 
   

 
   

31.   ,  is continuous  is differentiablef f f    

32. ,f  f  is bounded 
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CHAPTER 2     PROOF 

 

 

 

2.1     MATHEMATICAL SYSTEMS 

A mathematical system consists of the following: 

 a)  a set of undefined concepts; 

 b)  a universal set; 

 c)  a set of relations (we will define “relation” later); 

 d)  a set of operations (we will define “operation” later); 

 e)  a set of logical axioms (the rules of reasoning—logic); 

 f)  a set of non-logical axioms (these axioms pertain to the elements, relations, and 

operations; the entities studied by mathematicians; such an axiom might be 

)a b c b a c     ; 

 g)  a set of theorems; 

 h)  a set of definitions; 

 i)  an underlying set theory. (We will study this in Chapter 3.) 

For example, in plane geometry the undefined concepts were those of point and line. The 

universal set was the set of points in the plane. The relations were such concepts as equality, 
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perpendicularity, and parallelism. We have already studied the logical axioms. An example of a 

non-logical axiom is: 

Two different points are on exactly one line. 

Another example of a mathematical system is the system of real numbers, some axioms and 

theorems of which are considered in the Appendix. In this chapter we will consider proofs in this 

system. Our emphasis will be on the ways of going about a proof. 

 Every mathematical discourse is in reference to some mathematical system, even though 

it may not be clearly specified. 

Definitions.  

“When I use a word,” Humpty Dumpty said in a rather scornful tone, “it means just what 

I said it to mean—neither more nor less.” 

Lewis Carroll, Through the Looking Glass 

A definition is an abbreviation. As abbreviations, definitions can be short, for example, 

 a < b iff b > a, 

or long, for example, 

 f is integrable on [a, b] iff   
1

1
0

1

lim .
j j

n

j j j
x x

j
n

f x x



 




     

 You can always substitute an expression being defined for that which defines it, and 

conversely. 

 You should learn to read into a definition its “iff,” or “equivalence” meaning. Definitions 

are often stated in a manner which conceals the possibility of substituting one expression for 

another due to an intended but unstated equivalence. For example, consider the definitions: 

 An even integer a is of the form a = 2k, k an integer. 

 An integer a is even if a = 2k, k an integer. 

Each could be restated: 

 An integer a is even iff a = 2k, k an integer. 

Then, by the Rule of Substitution, either expression could be substituted for the other. 
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Exercise Set 2.1 

Restate the definitions in 1 through 8 in “iff” form. 

  1.  If a = 2k + 1, then a is odd. 

  2.  A quadrilateral is a polygon with just four sides. 

  3.  The maximum value of f on S, denoted max ,
S

f  is the largest value assumed by f on S. 

  4.  A series is divergent if it is not convergent. 

  5.  A triangle is a polygon with just three sides. 

  6.  A real number is a number x that is equal to an infinite decimal. 

  7.  A real number x which is not a rational number is an irrational number. 

  8.  The complex numbers are the numbers of the form x + yi, where x and y are real numbers 

and 
2 1.i     

  9.  Find three examples of incorrectly stated definitions in mathematics textbooks. 

10.  Find a textbook where the student has first been taught the meaning of “iff” and in which 

most definitions are stated as equivalences.  

11.  Look up the definition of triangle congruence in a geometry text. Would you call this a long 

or short definition? 
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2.2     PROOF 

Definition. Suppose 1 2, , , kA A A are all the axioms and previously proved theorems of a 

mathematical system. A formal proof (or deduction) of a sentence P is a sequence of statements 

1 2, , , nS S S , where 

 (1) nS  is P (the last statement is P), 

and one of the following holds: 

 (2) 1 2 is one of , , , ;i kS A A A   

 (3) iS follows from the previous statements by a valid argument using the rules of 

reasoning. 

 A theorem is any sentence deduced from the axioms and/or the previous theorems.  

 The definition of formal proof is somewhat complicated. An example should help. 

EXAMPLE. Suppose a mathematical system contains just the following axioms: 

 
 1

2

: 2 3

:

A a b c x y

A a b c

       

 
  

The following is a formal proof of x < y: 

  1 1: 2 3 ,by S a b c x y A       

 2 2: ,  by S a b c A   

 3 1 2: 2 3,  by modus ponens on ,S x y S S     

  4 : ,  by the tautology S x y P Q P     

In practice mathematicians do not write formal proofs. They write informal proofs. An informal 

proof is an argument which shows the existence of a formal proof. As such it gives enough of the 

formal proof so that another person becomes “convinced.” Thus, we might call an informal proof 

a “convincing argument.” Mathematicians try to convince other mathematicians. You will try to 

convince your fellow students and your instructor. 

EXAMPLE. The following is an informal proof of x < y, in the previous system: 

 Informal proof. From 1 2 and A A it follows that  2 3 .x y   Thus x < y. 
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 Henceforth we will be writing only informal proofs. The art of mathematics is creating 

proofs. Just as a painter has some basic modes of painting, such as oils, water colors, and wood 

cuts; so the mathematician has some basic modes of proof. We now consider these modes of 

proof. 

Exercise Set 2.2 

In the mathematical system of the preceding example, give 

  1.  a formal proof of 2 = 3. 

  2.  an informal proof of 2 = 3. 
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2.3     PROVING SENTENCES OF THE TYPE P Q   

Now we consider two modes of proof for sentences of the type ;P Q  later we consider others. 

Rule of Conditional Proof—RCP. You usually proved a sentence of the type P Q  in plane 

geometry by assuming P and deducing Q. You considered Q the conclusion. In actuality 

 P Q   

was the conclusion; it was what you were trying to prove. 

 To prove P Q , first assume P to be true (make it an axiom temporarily). Then using P 

and any of the other theorems and axioms try to deduce Q. Once Q is deduced in this manner, 

you have completed a proof of .P Q  You have not shown that Q is true; you have only shown 

that Q is true if P is true. Whether P is true is another question; whether Q is true is also another 

question. What you have shown to be true is .P Q   

 To explain this more formally, suppose 1, , nA A  are the axioms and previously-proved 

theorems. To prove P Q  is to show that 

From 1, ,  we can deduce nA A P Q  

is a valid argument. To do this temporarily assume P is an axiom and show that 

 1From , , ,  we can deduce nA A P Q   

is a valid argument. The above is referred to as The Deduction Theorem, though we consider it 

a proof axiom.  

EXAMPLE. Recall: a is an even integer iff a can be expressed in the form a = 2k, where k is 

some integer.  

Prove: a is an even integer → 
2a  is an even integer. 

 Proof. Assume a is an even integer. Then a = 2k for some integer k. Hence 

 2 2 22 2  and 2a k k  is an integer, so 
2a  is even. ∎ 

Within the previous proof we used the tautology 

        1 1 2 .nP S S S S R P R            

That is, 
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a even → a = 2k →  2 2 22 2a k a   is even; 

                                             ∴ a even → 
2a  is even. 

 All proofs will be given in a paragraph style because this is the way experienced 

mathematicians write proofs. This style differs from the more-difficult-to-write parallel column 

format sometimes used in plane geometry. 

 The Rule of Conditional Proof actually provides another (assumed) way to establish that 

a conditional sentence is true. To explain this, note that the sentence 

 If grass is red, then 3 = 4        (1) 

is true because the antecedent is false. This might be called “structural truth.” Compare this with 

the sentence 

 If 4x + 5 = 13, then x = 2.                                                                                           (2)     

Now any replacement for x which makes the antecedent 4x + 5 = 13 false, makes the sentence 

(2) true. So the only concern is whether (2) is true when 4x + 5 = 13 is true. To establish that (2) 

is true, one establishes the truth of x = 2 based on the truth of 4x + 5 = 13. This might be called 

“truth by dependence of the consequent on the antecedent.”  

 As another example of the Rule of Conditional Proof (RCP), we deduce another 

reasoning sentence. 

THEOREM. Every sentence of the type 

    xP x xP x    

is true.  

 Proof. Assume  xP x  is true. Then the solution set for P(x) is the universal set. Since 

universal sets are assumed to be nonempty, the sentence  xP x  is true. ∎ 

 Is it worth asking why      is true when xP x xP x xP x    is false? The sentence is 

true by the truth table for ‘→’. That is, the antecedent is false so the conditional is true. 

Proving P → Q by Contrapositive. 

We can prove  

 P → Q 
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by proving its contrapositive 

 ~ Q → ~ P. 

The two are equivalent.  

EXAMPLE. The following proof is from Euclidean geometry. We assume the student has a 

knowledge of its axioms and properties. 

 

 Prove: 1 2 .A B       

 Proof. By contrapositive we will prove 

 1 2 .A B      

 Assume 1 2 ;   that is, they intersect at a point R. Then RCB is a triangle, so  

∠C + ∠B + ∠R = 180 .  Also ∠A and ∠C are supplementary. Hence ∠C + ∠B + ∠R =  

∠A + ∠C, so ∠B + ∠R = ∠A. Recall that the measure of any angle of a triangle is positive 

so ∠R > 0. Then ∠B < ∠A (see P1 of the Appendix) or ∠A ≠ ∠B. ∎ 

 Notice that in the previous proof the rule of conditional proof was used to prove the 

contrapositive. 

 In summary, we have considered two ways of proving P → Q. 

 1) RCP. Assume P, deduce Q. 

 2) Contrapositive. Prove ~ Q → ~ P; assume ~ Q and deduce ~ P.  

Later we consider others. 

  



68 
 

Exercise Set 2.3 

Consider 

a2 is an even integer → a is an even integer 

  1.  State the contrapositive. 

  2.  Prove the contrapositive. 

Give a direct proof of each of the following using RCP.  

  3.  If a is even and b is even, then a + b is even. 

  4.  If a is even and b is even, then ab is even. 

  5.  If a is even and b is odd, then a + b is odd. 

  6.  If a is even and b is odd, then ab is even. 

  7.  If a is odd and b is odd, then a + b is even. 

  8.  If a is odd and b is odd, then ab is odd. 

  9.  If a is odd, then a2 is odd. (Although you are asked to give a proof here, do you see why it is 

unnecessary based on what we have already proved?) 

10.  Prove: Every sentence of the type 

    , ,y xP x y x yP x y      

is true. 

11.  Give a proof by contrapositive of the sentences in Exercises 9 and 10. 

12.  If a2 is odd, then a is odd. (Again, though you are asked to give the proof, do you see why it 

is unnecessary?) 

13.  A proper divisor of a number is a divisor which is less than the number. A perfect number 

is a number which is the sum of its proper divisors. For example, 6 is a perfect number. 

Prove: If n (natural number) is perfect, then n is not prime. 

14.  Mathematicians often prove a sentence of the type P → (Q ∧ R) by proving P → Q and  

P → R . Find a tautology which justifies this. 
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15.  Mathematicians often prove a sentence of the type P → (Q → R) by proving (P ∧ Q) → R. 

Find a tautology which justifies this. 

16.  Mathematicians often prove a sentence of the type (P → Q) → (S → R) by proving  

[(P → Q) ∧ S] → R. Justify this with a tautology. 
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2.4     PROVING SENTENCES OF THE TYPE P Q   

We consider three modes of proof for sentences of the type P ↔ Q.  

Prove P → Q and Q → P. One mode of proof for  

 P ↔ Q 

is derived from its definition: 

 (P → Q) ∧ (Q → P). 

Thus there are two steps in the proof: 

 a) Prove P → Q; referred to as the “only if,” or “sufficiency,” part. 

 b) Prove Q → P; referred to as the “if,” or “necessity,” part. 

Each of these sentences is a conditional which might be proved using previously considered 

modes of proof.  

EXAMPLE. Prove: Real numbers a and b are roots of the equation x2 + px + q = 0 iff a + b = 

−p and ab = q. 

 Proof. 

 a) (Only if, or sufficiency) 

Prove: If a and b are roots of the equation x2 + px + q = 0, then a + b = −p and ab 

= q 

Using RCP, assume a and b are roots of the equation. Then via the quadratic formula we 

know that  

 
2 24 4

 and .
2 2

p p q p p q
a b

     
    

 (The signs +, − could be interchanged without affecting the proof.) 

 Then a + b = −p and ab = q, by algebra. 

 b) (If, or necessity) 

Prove: If a + b = −p and ab = q, then a and b are roots of the equation  

x2 + px + q = 0. 
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Again, using RCP assume a + b = −p and ab = q. Then b = −p – a and q = ab =     

a(−p – a) = −ap – a2. Hence a2 + pa + q = 0, so a is a root of x2 + px + q = 0.  Similarly, 

interchanging a and b in the argument shows that a is also a root of x2 + px + q = 0.  ∎ 

Prove P → Q and ~ P → ~ Q. 

Another mode of proof for  

 P ↔ Q 

is to prove 

 P → Q, 

as before, but then prove the contrapositive of Q → P, 

 ~ P → ~ Q. 

For example, suppose you wanted to prove 

a is even iff a2 is even, 

using the mode of proof just described. The sentences to be proved are: 

 a) a even → a2 even; 

 b) a not even (odd) → a2 not even (odd). 

We have proved these sentences in previous work.  

Iff-String. A third mode of proof for 

 P ↔ Q 

is accomplished by producing a string of equivalent sentences leading from P to Q as follows. 

   P ↔ Q1      P ↔ Q1 

  Q1 ↔ Q2     abbreviated      ↔ Q2 

         ⋮            ⋮ 

  Qn ↔ Q         ↔ Q 

Once each of the previous is proved P ↔ Q follows by the tautology 

      1 .nP Q Q Q P Q          
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EXAMPLE. Prove. Every sentence of the type 

    , ,x yP x y y xP x y      

is true. 

 Proof. Using Iff-string we have 

 ∀x∀yP (x, y) is true   ↔   for every replacement of x and y by members a and b of the  

                                                     universal set P(a, b) is true; 

                                              ↔   for every replacement of y and x by members a and b of the 

                                                     universal set P(a, b) is true; 

                                              ↔   ∀y ∀x P(x, y) is true.  ∎ 

 There is another aspect of “Iff-string.” To prove P ↔ Q by means of a string it suffices to 

prove 1 1 2 1 1 1 2, , , ,  for some , , ,  and , , , ,  n n kP Q Q Q Q Q Q Q Q S S S S P       

1for some , , .kS S  In a similar manner, one sometimes has to prove 

 P, Q, S, T 

equivalent. A way this might be proved is to prove  

 P → Q → S → T → P, 

and thus cut almost in half the number of proofs otherwise encountered in proving P ↔ Q,  

Q ↔ S, S ↔ T. 

Many more examples of this mode of proof will be given in Chapter 3 on set theory. 

 In summary, we have considered three modes of proof for sentences of the type P ↔ Q: 

 a) Prove P → Q and Q → P. (Q → P is called the converse of P → Q.) 

 b) Prove P → Q and ~ P → ~ Q. (~ P → ~ Q is called the inverse of P → Q.) 

 c) Iff-String. Produce a string of equivalent sentences leading from P to Q. 

Exercise Set 2.4 

Prove the sentences in Exercises 1 through 7. 

  1.  a is an odd integer ↔ a2 is an odd integer. 
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  2.  Consider the figure 

 

Prove: AB = BC ↔ ∠1 = ∠2 

Use congruence properties of geometry. 

  3.  a < b ↔ a + c < b + c. Use the real number properties of the Appendix. 

  4.  x is an odd integer iff x + 1 is an even integer. 

  5.  x is an even integer iff x + 2 is an even integer. 

  6.  Every sentence of the type 

    , ,x yP x y y xP x y      

is true. 

  7.  Every sentence of the type 

        x P x Q x xP x xQ x             

is true. 

  8.  Mathematicians often prove a sentence of the type P → (Q ↔ R) by proving (P ∧ Q) → R 

and (P ∧ R) → Q. Find a tautology which justifies this. 
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2.5     PROVING SENTENCES OF THE TYPE  xP x   

To prove 

  xP x   

let x represent an arbitrary element of the universal set and prove 

 P(x) 

true. Then since x was an arbitrary element of the universal set generalize  

  xP x   

true. This is justified by LOGICAL AXIOM 2, p. 45.  

EXAMPLE. Consider 

∀ f ( f is differentiable → f is continuous). 

To prove the sentence let f be an arbitrary function and prove 

 f is differentiable → f is continuous. 

By RCP, assume f differentiable and prove f continuous. We will not include the proof; it appears 

in most calculus texts. Once we have proved 

 f is differentiable → f is continuous, 

we have proved 

 ∀ f ( f is differentiable → f is continuous), 

since f was an arbitrary function. 

EXAMPLES. 

a) Consider  21 1x x x     with universal set {2, 3}. Considering 

 1 < 2 → 1 < 22 

and 

 1 < 3 → 1 < 32, 

we have proved the sentence by substitution. 
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b) Consider  21 1x x x     with infinite universal set ℕ. Trying to prove the sentence by 

substituting each element would be impossible. To do the proof, let x be arbitrary and prove 

 
21 1 .x x     

Such a proof would depend on the axioms for ℕ (see Appendix) which are stated in terms of 

quantifiers. 

 Proof. Assume 1 < x. Then since 1 > 0, by O6, it follows that x > 0 by O2. Then 1 < x and 

x > 0 implies 1 ,x x x    by O4. So 1 < x and x < x2 implies 1 < x2, by O2. Therefore,  

 
21 1x x     

so 

  21 1x x x      

is proved. ∎ 

 To prove ∃xP(x) show or prove there exists an x in the universal set for which P(x) is 

true. 

EXAMPLE. Prove: ∃ f ( f is continuous ∧  f is not differentiable). 

Proof. The function described by f(x) = | x | is continuous but not differentiable at x = 0. ∎ 

 We will comment about another mode of proof for ∃xP(x) when we consider proof by 

contradiction. 

Exercise Set 2.5 

Describe the modes of proof you might use to prove each of the following. 

  1.   2  is even iff  is even .x x x   

  2.  ∀a∀b (a < b iff a + 8 < b + 8). 

  3.  For any two sets A and B, x ∈ A ∪ B iff x ∈ B ∪ A. 

  4.  For any set A, A ⊆ A. 

  5.  For any set A, ∅ ⊆ A. 

  6.  ∃x, x2 = x 
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  7.   
1

,  is divergent lim 0n n n
n

n

u u u





 
   

 
   

  8.  ∃y∀x, x + y = x 

  9.  ∃y∀x, xy = x 
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2.6     PROOF BY CASES 

Proof by cases is used several ways and involves the connective ∨ (or). 

Proving a Sentence of the Type (P ∨Q ) → R. This type of proof utilizes the tautology 

      P Q R Q P R Q                                                                                     (1) 

The proof is accomplished by proving the antecedent of (1), 

    .P Q R Q     

Hence P → Q and R → Q must be proved. Any mode of proof for conditional sentences can be 

used. Intuitively, you want to prove that Q can be deduced from either P or R, so you must show 

that from either one you can deduce Q.  

EXAMPLE. Prove: (a = 0 ∨ b = 0) → ab = 0. 

 Proof. 

 CASE 1) Prove a = 0 → ab = 0. Assume a = 0. Then ab = 0∙b = 0, by P3. 

 CASE 2) Prove b = 0 → ab = 0. The proof is analogous to Case 1. ∎ 

Similarly, a proof by cases of 

  1 nP P Q     

is accomplished by proving 

 

1

2

     

.n

P Q

P Q

P Q







  

Such a proof has n cases and is justified by the tautology 

      1 1 .n nP Q P Q P P Q                

As an Intermediary Step. Suppose we are again proving 

 P → Q. 

                                            
 Which means “appealing to your mathematical experience.” 
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We might discover that  

  1 2 nP P P P                                                                                       (2) 

and 

      1 2 .nP Q P Q P Q        

By proof by cases we have shown that  

  1 2 .nP P P Q                                                                                      (3) 

Then using (2) and (3) and The Law of Syllogism it follows that  

 P → Q. 

Hence another way to use proof by cases is as an intermediary step derived from the antecedent 

of a conditional sentence. 

EXAMPLE. Recall the definition:  

 
 when 0,

 when 0.

x x x

x x x

 

  
  

Prove: If x is a real number, then | x | ≥ 0. 

 Proof. If x is a real number, then x ≥ 0 ∨ x < 0. We will prove 

(x ≥ 0 ∨ x < 0) → | x | ≥ 0. 

 CASE 1) x ≥ 0. If x ≥ 0, then by definition | x | = x so | x | ≥ 0. 

CASE 2) x < 0. If x < 0, then by definition | x | = –x. By properties of inequalities if x < 0, 

then –x > 0 so | x | > 0. 

Hence (x ≥ 0 ∨ x < 0) → | x | ≥ 0. Therefore, if x is a real number, then | x | ≥ 0. ∎ 

 The art of producing a proof by cases may be discovering what set of exhaustive cases is 

appropriate. For example, if x is a real number you might use 

 a) x ≥ 0 or x < 0; 

 b) x > 0 ∨ x = 0 ∨ x < 0; 

 c) x > 2 ∨ x = 2 ∨ x < 2. 
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Notice each example is exhaustive in that all possibilities occurred. As other examples, a 

function is either continuous or discontinuous, an integer is either odd or even. 

Exercise Set 2.6 

Complete. 

  1.  If A is an angle, the cases you might consider are A acute ∨ ___________ ∨____________. 

  2.  If f is a function, the cases you might consider are: 

 a) f is differentiable ∨ _____________. 

 b) f is even ∨ ____________ ∨ f is neither even nor odd. 

 c) f is constant ∨ ____________. 

  3.  If x is an integer the cases you might consider are:  

 a) x is even ∨ ____________. 

 b) x > 9 ∨ ____________ ∨ x < 9. 

Use proof by cases to prove the following. 

  4.  If x is a real number, then | −x | = | x |. 

  5.  If x is a real number, then | x2 | = | x |2. 

  6.  For every real number x, x ≤ | x |. 

  7.  If x and y are real numbers, then .xy x y   Hint:

0 0, 0 0, 0 0, 0 0.x y x y x y x y              

  8.  If a > 0, then | x | < a iff –a < x < a. 

  9.  If a > 0, then | x | > a iff x > a ∨ x < −a. 

10.  If x and y are real numbers, then .x y x y     

11.  If x and y are real numbers, then .x y x y     

12.  If f is a strictly monotone function, then f is one-to-one. Hint: f is strictly monotone → f is 

strictly increasing or strictly decreasing. 

13.  If x is an integer, then x2 – x is even. 
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14.  If x is an integer, then x2 + x + 1 is odd. 

15.  Find a proof by cases of the Law of Cosines in a trigonometry book. State the proof and 

explain the use of Proof by Cases. 

16.  Find a proof by cases of the formula 

  sin sin cos cos sina b a b a b     

in a trigonometry book. State the proof and explain the use of Proof by Cases. 

17.  Find a proof by cases of Rolle’s Theorem in a calculus book. State the proof and explain the 

use of Proof by Cases. 

18.  The function g described by g(x) = | x |, x ≠ 0, is differentiable while the function f described 

by f(x) = | x | is not differentiable. Find a formula for g   using proof by cases. Use a calculus 

book if necessary. 

19.  Prove: Every sentence of the type 

      ( ) ( )xP x xQ x x P x Q x        

is true. 

20.  Suppose you want to prove a sentence of the type 

P → (R ∧ Q) 

by contrapositive. Explain the possible role of proof by cases in such a proof. 
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2.7     MATHEMATICAL INDUCTION 

Consider proving sentences of the type 

 For every natural number n, P(n) 

or 

 ∀nP(n) 

where the quantifier refers to the set ℕ = {1, 2, 3, …}. One way to prove sentences of this type is 

by mathematical induction, which uses a rule of reasoning not yet discussed. The following is 

the mathematical induction sentence, which the mathematician accepts as an axiom. (This is 

another situation in which the mathematician makes assumptions about how he will reason.)  

Principle of Mathematical Induction. Suppose P(n) is a sentence which is a statement for any 

n ∈ ℕ, then 

        1 , 1                                                (MI)P k P k P k nP n        

If we can prove the antecedent of MI, 

      1 1 ,P k P k P k       

then by modus ponens we can deduce 

 ∀nP(n). 

Thus there are two steps in the proof of ∀nP(n): 

 1) BASIS STEP: Prove P(1). 

 2) INDUCTION STEP: Prove    , 1 .k P k P k     

That is, we prove P(1) and for every k,    1 .P k P k    

 To explain intuitively how this proves ∀nP(n) suppose we have completed both parts of 

the induction proof; that is P(1) and    , 1k P k P k    are proved. We have deduced an 

endless sequence of sentences 
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1

1 2

2 3
       , 1

          

1

          

P

P P

P P
k P k P k

P n P n




 


 
  


 



  

The process then becomes similar to knocking over a row of tin soldiers for  

 

 

   

 

1

1 2

2

P

P P

P





 , then 

 

   

 

2

2 3

3

P

P P

P





 , then 

 

   

 

3

3 4

4

P

P P

P





 , and so on, producing the 

endless sequence      1 , 2 , , , ;P P P n  

 

that is, we have proved ∀nP(n). We will be using basic algebra in the following proofs. 

EXAMPLE. Prove: ∀n, 12 2n n   

 Proof. P(n): 12 2n n   

 1) BASIS STEP: Prove P(1): 1 1 12 2    

      Now 1 1 1 1 1 12 2, 2 4,  so 2 2 .      

 2) INDUCTION STEP. Prove ∀k,    1P k P k    

  Assume P(k): 12 2k k   

  Deduce P(k + 1): 1 22 2k k    

 

 1

1

1 2

Then 2 2 ,  by 

2 2 2 2 ,  by Property O4 of the Appendix

2 2

k k

k k

k k

P k



 



  



  



83 
 

 Thus P(k + 1) follows. ∎ 

Note how the proof was created; we saw that multiplying both sides of the inequality P(k) by 2 

gave the inequality P(k + 1). 

 When doing a proof by mathematical induction it is helpful to list  

P(n), 

 P(1), 

 P(k), 

 P(k + 1) 

as illustrated in the previous example. This aids in identifying what is to be assumed and what is 

to be proved. Usually proving P(1) is just a matter of substitution, but proving                        

∀k, P(k) →P(k +1) requires more effort. An aid to doing this is having listed P(k) and P(k + 1), 

examine P(k + 1) and try to discover some way of deriving it from P(k). 

 We can also use mathematical induction to make definitions, called recursive definitions. 

For example, the following is a definition of 𝚺- (sigma) notation.  

Definition. For any natural number n and any numbers 1 1
, , ,

n

n jj
a a a

  is defined as 

follows: 

 

1

1

1

1

1

1 1

(1)     

(2)     

j

j

k k

j j k

j j

a a

a a a







 



 
  
 



 

  

This definition avoids the somewhat mysterious use of dots, such as 

 1 2

1

n

j n

j

a a a a


      

and is thus more elegant. 
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EXAMPLES.  

a) 
4 3 2 1

1 1 1 1

2 2 8 2 6 8 2 4 6 8 2 4 6 8
j j j j

j j j j
   

     
                 
     

      

b) 
5

1 2 3 4 5

1

3 3 3 3 3 3j

j

       

Now let us do another mathematical induction proof. 

EXAMPLE. Prove: For every natural number n, 
  2

1

1 2 1
.

6

n

j

n n n
j



 
   

 Proof.    P(n):   
  2

1

1 2 1

6

n

j

n n n
j



 
   

 1) BASIS STEP. Prove P(1):   
  1

2

1

1 1 1 2 1

6j

j


 
   

 This follows by substitution:   
  2

1 1 1 2 1
1

6

 
   

 2) INDUCTION STEP.  

 Assume P(k):   
   2

1

1 2 1

6

k

j

k k k
j



   
   

 Deduce P(k + 1):  

  

     

     

1
2

1

1 2 2 1 1

6

1 2 2 3

6

k

j

k k k
j

k k k





       

    



  

Now 

 

   
   

1
22 2

1 1

2

1 ,  by definition of -notation.

1 2 1
1 ,  by 

6

k k

j j

j j k

k k k
k P k
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2

2 1
1 1

6

2 1 6 1
1

6 6

2 7 6
1

6

1 2 2 3
.

6

k k
k k

k k k
k

k k
k

k k k

  
     

 

   
    

 

  
    

 

    


 

                                                                                                                                 ∎ 

The following is another recursive definition from calculus. 

Definition. Suppose y is a real function.  nD y  represents the nth derivative of y with respect to 

x and is defined as follows: 

 1)    1 ,D y D y   

 2)    1 ,k kD y D D y      the (k + 1)st derivative is the derivative of the kth derivative. 

Now let us do a mathematical induction proof from calculus. 

EXAMPLE. Prove: For every natural number n,   ( ) .n x xD xe x n e    

 Proof.    : ( )n x xP n D xe x n e    

 1) BASIS STEP. Prove P(1):   ( 1)x xD xe x e    

 Using the product rule for derivatives we have 

   ( 1) ,x x x xD xe xe e x e      

 so P(1) is true. 

 2) INDUCTION STEP. Prove ∀k, P(k) → P(k + 1). 

  Assume P(k):   ( )k x xD xe x k e    

  Deduce P(k + 1):    1 1 .k x xD xe x k e        
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1 1Now ,  since from calculus we know 

,  by 

,  by the product rule for derivatives

1

k x k x k k

x

x x

x

D xe D D xe D D D

D x k e P k

x k e e

x k e

   
 

   

  

    

  

 Hence P(k + 1). ∎ 

Note how important the recursive definitions were in each of the two previous proofs.  

 It is important to realize that mathematical induction can be applied to prove any sentence 

∀nP(n) which refers to the natural numbers. Whether the proof can be accomplished is another 

problem.  

 Both the basis and induction steps are essential in a proof by mathematical induction. 

There are sentences P(n) for which  

 P(1) is true 

but 

 ∀nP(n) and ∀k, P(k) → P(k + 1) are false.  

Such a sentence is n2 = n. 

 There are sentences P(n) for which 

    1k P k P k      is true 

but 

 P(1) and ∀nP(n) are false. 

Such a sentence is n = n + 1. 

In such cases we can line up the tin soldiers but we cannot knock over the first one.  

 Mathematical induction can also be used to prove sentences referring to certain subsets of 

the integers.  
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Mathematical Induction. For any universal set of the type 

  |  and ,  for some x x m x m     

and any sentence P(x), 

        , 1 .P m k m P k P k xP x         

For example, for the set  3, 2, 1,0,1,    we would have to prove 

     3  and 3, 1 .P k P k P k       For  0,1,2,3,  we would have to prove P(0) and 

   0, 1 .k P k P k     This is illustrated in the next example. First we need another recursive 

definition. 

Definition. For any natural number n and any numbers 1, , ,na a  
1

n

jj
a

  is defined as follows: 

 

1

1

1

1

1

1 1

1)

2)

j

j

k k

j j k

j j

a a

a a a







 



 
  
 



 

  

EXAMPLES.  

 

4 3

1 1

2

1

1

1

a) cos cos cos 4

cos cos3 cos 4

cos cos 2 cos3 cos 4

cos cos 2 cos3 cos 4

j j

j

j

j j

j

j

  

  

   

   

 





 
  
 

 
   
 

 
    
 

   

 





  

5

2

1 1 1 1 1
b) 1 1 1 1 1

2 3 4 5j j
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 Look for a pattern in the following and try to conjecture a formula for  
2

1 1 .
n

j
j


   

   

    

     

2

1 1 1
2 2

2

3

1 1 1 1
2 3 3

2

4

1 1 1 1 1
2 3 4 4

2

a) 1 1

b) 1 1 1

c) 1 1 1 1

j

j

j

j

j

j







   

    

     







  

 In the preceding you made some observations, and based on the observations you 

hopefully made a conjecture about a formula for  
2

1 1 .
n

j
j


  This kind of reasoning is called 

inductive reasoning. It uses your intuition (your mathematical experience). You have not yet 

used deductive reasoning to prove your conjecture. Note the following: 

 1 + 5 = 6 

 19 + 13 = 32 

 5 + 7 = 12 

Use inductive reasoning and make a conjecture. It is that “the sum of two odd numbers is even.” 

Earlier we proved this using deductive reasoning. Below we will use “mathematical induction” 

to give a deductive proof that  

 
2

1 1
1 .

n

j j n

 
  

 
   

The point here is that “mathematical induction” is somewhat misnamed because it is very much 

deductive reasoning.  

EXAMPLE. Prove: For any natural number n ≥ 2,  
2

1 1 1
n

j
j n


    

Proof. The sentence P(n) is  
2

1 1 1 ,
n

j
j n


   with universal set  2,3,4, .  Thus we 

must prove P(2) and for every k ≥ 2,    1 .P k P k    

1) BASIS STEP. Prove P(2):  
2

2
1 1 1 2.

j
j


   This follows since 1 – ½ = ½. 
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2) INDUCTION STEP. Assume P(k):  
2

1 1 1 .
k

j
j k


   Prove P(k + 1): 

   
1

2
1 1 1 1 .

k

j
j k




     

     

   

 

1

1 1 1
1

2 2

1 1
1

11 1
1 1

1
1

Now 1 1 1  by the recursive definition

1  by 

.

k k

j j k

j j

k k

k
k k k

k

P k





 




 



    

  

  



 

  

                                                                                                                         ∎ 

Exercise Set 2.7 

Prove the following by mathematical induction. 

  1.  ∀n ∈ ℕ, 2n > n 

  2.  ∀n ∈ ℕ, 3n > n 

  3.  ∀n ∈ ℕ, 2 ≤ 2n 

  4.  ∀n ∈ ℕ, 2n ≤ 2n    (Hint: Use Exercise 3) 

  5.  ∀n ∈ ℕ, n < n + 1 

  6.  ∀n ∈ ℕ, 2n – 1 ≤ n!     (Hint: 1! = 1, (k + 1)! = (k + 1)k!) 

  7.  ∀n ≥ 4, 2n < n!     Prove 2n < n! first when n = 3. 

  8.  Let a and b be positive real numbers. Prove: ∀n ∈ ℕ (a < b → an < bn). 

  9.  ∀n ∈ ℕ, (2n)! < 22n(n!)2 

10.  ∀n ∈ ℕ,  sin sinnx n x      (Hint: Use  sin sin cos cos sin )a b a b a b     

11.  DeMoivre’s Theorem: ∀n ∈ ℕ, ∀u ∈ ℝ, 

      2cos sin cos sin ,  where 1
n

u i u nu i nu i       

12.  ∀n ∈ ℕ, 
2

2

1 1
1

2

n

j

n

j n
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13.  ∀n ∈ ℕ, 1

2

sin 2
cos 2 , sin 0

2 sin

nn
j

n
j

u
u u

u





    

14.  Bernoulli’s Inequality:  1 , 1 1
n

a n a an         

15.  ∀n ∈ ℕ,   1n nD x nx    (Hint: Assume x0 = 1 and use the product rule for derivatives) 

16.  ∀n ∈ ℕ,      
1

log 1 1 !
nn n

eD x n x
      

17.  ∀n ≥ 5, 2n > n2 

18.  ∀n ≥ 6, n3 < n! 

19.  ∀n ∈ ℕ, 
2 2

1

;  that is, 1 2
2 2

n

j

n n n n
j n



 
       

20.  ∀n ∈ ℕ, 
1

1

2 2 2
n

j n

j





    

21.  ∀n ∈ ℕ,  
1

! 1 ! 1
n

j

j j n


      

22.  ∀n ∈ ℕ,  
  

1

1 2
1

3

n

j

n n n
j j



 
    

23.  ∀n ∈ ℕ, 
   1

1
1

1 ! 1 !

n

j

j

j n

 
 

   

24.  ∀n ∈ ℕ, 
 

22

3

1

1

4

n

j

n n
j




   

25.  ∀n ∈ ℕ, 
2

1n

j

n
j

   

26.  Given the real numbers 1, , na a  and using ,x y x y    prove 
1 1

.
n n

i i

i i

a a
 

    

27.  Given a set of n points in the plane, n ≥ 2, no three of which are collinear. Prove that the 

number of straight lines joining these points is n(n – 1)/2. 
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28.  ∀m ≥ 2 and ∀n ∈ ℕ, mn > n. (Hint: Let m ≥ 2 be arbitrary. Then prove ∀n ∈ ℕ, mn > n by 

MI.) 

29.  ∀n ∈ ℕ,  2 1 1
1 1 .

1

n
n r

r r r r
r

 
     


 This is the formula for the sum of the terms of 

a geometric progression. 

30.  ∀n ∈ ℕ,       1
2

1 2 .a a d a nd n a nd         This is the formula for the sum of 

the terms of an arithmetic progression.  

31.  Why cannot the following be proved by MI? 

 a) ∀n ∈ ℕ,    
2

3 5 2 1 1n n        

 b) ∀n ∈ ℕ,   21 3 2 1 3n n        

32.  Find the error in this proof. 

Theorem. Everyone is of the same sex. 

 Proof. Let P(n) be the following sentence: 

 If A is a set containing n people, then all the people have the same sex. 

Indeed, P(1) is true. Assume P(k) is true. Let A be a set of k + 1 people. Then A is the 

union of two overlapping sets A1 and A2 each containing k people. (Consider the 

following illustration when n = 5)   

         

By P(k) all the people in A1 are of the same sex, and all the people in A2 are of the same 

sex. Since A1 and A2 overlap all the people in A are of the same sex. 

33.  Use proof by cases and mathematical induction to prove the following. For every natural 

number n, 
21, 1, , or , where 1.ni i i i       
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34.  Consider P(n): n2 = n 

 a) Prove  nP n  is false by finding a counterexample. 

 b) Prove P(1). 

 c) Form the negation of    1 .k P k P k      Prove the negation. 

35.  Consider P(n): n = n + 1 

 a) Prove  nP n  is false by finding a counterexample. 

 b) Prove P(1) is false. 

 c) Prove    1 .k P k P k      

Prove the following by mathematical induction. 

36.  
  

 

  

31 1 1 1

1 2 3 2 3 4 3 4 5 1 2 4 1 2

n n

n n n n n


    

         
  

37.       1 1 1 1
1 2 3

1 1 1 1 1
n

n        

38.   cos 1
n

n         (Hint: Use an identity for  cos .   ) 

39.  
 1

1 1

1 1

n

j j j n


 

   

40.  For every natural number n ≥ 2,  1 2 1 2log log log log .a n a a a nb b b b b b      

Prove the following for any complex numbers 1, , ,nz z  where 
2 1 and i z   is the conjugate of 

z. (If z is the complex number z = a + bi, then .)z a bi    

41.  n nz z   

42.  1 2 1 2n nz z z z z z         

43.  1 2 1 2n nz z z z z z   

44.   is either 1, 1, ,  or .ni i i    
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For any integers a and b, b is a factor of a if there exists an integer c such that a = bc. Prove the 

following for any natural number n.  

45.  3 is a factor of 
3 2n n   

46.  2 is a factor of 
2n n   

47.  5 is a factor of 
5n n   

48.  3 is a factor of   1 2n n n    

49.  The Tower of Hanoi problem. There are three pegs on a board. On one peg are n disks, 

each smaller than the one on which it rests. The problem is to move this pile of disks to another 

peg. The final order must be the same, but you can move only one disk at a time and you can 

never place a larger disk on a smaller one.  

 a) What is the least number of moves it takes to move three disks? 

 b) What is the least number of moves it takes to move four disks? 

 c) What is the least number of moves it takes to move two disks? 

 d) What is the least number of moves it takes to move one disk? 

e) Conjecture a formula for the least number of moves it takes to move n disks. Prove it 

by mathematical induction.  
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2.8     PROOF BY CONTRADICTION 

“Eliminate all other factors, and the one which remains must be the truth.” (Sherlock 

Holmes)  

Sir Arthur Conan Doyle, The Sign of Four 

A contradiction is a statement which is false no matter what the truth value of its constituent 

parts. For example, the sentence  

 R ∧ ∼ R 

is always false as shown in its truth table. 

 

                 ~                      ~

T                     F                            F

F                     T                            F

R R R R

  

 A proof by contradiction of a sentence 

 P 

is a proof that assumes  

 ~ P 

and yields a sentence of the type 

 R ∧ ∼ R, 

where R is any sentence including P, an axiom, or any previously proved theorem. This is 

justified by the tautology 

   .P R R P       

Intuitively, P can only be true or false, but not both. If we assume its negation true and this yields 

another sentence both true and false, then ~ P cannot be true so P must be true. 

 The phrases reduction ad absurdum, meaning “reduce to an absurdity,” and indirect 

proof also refer to proof by contradiction. 

 The importance of being able to form sentence negations is realized when doing proofs 

by contradiction. To begin such proofs, you must know how to form negations. 
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EXAMPLES.  

To begin a proof by contradiction of 

     a)  b)  c)  d)  xP x xP x P Q Q xP x      

we would assume the following negations 

     a)  b)  c)  d)  x P x x P x P Q Q x P x      

 Proof by contradiction provides another mode of proof for proving sentences of the type 

 ∀xP(x) 

or 

 ∃xP(x). 

In fact, it provides another mode of proof for proving any sentence. 

 We proved several sentences of the type ∃xP(x) directly, by displaying an x such that 

P(x) is true. A proof by contradiction of ∃xP(x) may not display an x; that is, one could prove 

there exists an x without displaying it. This is illustrated in calculus where an indirect proof of 

the sentence 

 
2

1

, lim

n

y

n
x e x


    

can be given without actually displaying x. 

 Proofs of existence theorems in differential equations provide other such illustrations. 

Proving a Sentence of the Type P → Q by Contradiction. Most proofs by contradiction are of 

sentences of the type P → Q. To prove a sentence of the type  

 P → Q 

by contradiction, assume its negation 

 ~ (P → Q)    or      P ∧ ~ Q.    

Hence assume both P and ~ Q true, and deduce a sentence of the form R ∧ ~ R. 

                                            
 See Thomas, George B., Calculus and Analytic Geometry, Reading, MA, Addison-Wesley Pub. Co., 5th Ed., 1979, 

p. 379. 
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EXAMPLE 1. Prove: For every x, x ≠ 0 → x−1 ≠ 0. 

Proof. For contradiction assume the negation  

 There exists an x such that 
10 0.x x     

Then by M4, 

 
1 1.x x    

Also, using 
1 0x   and P3, 

 
1 0 0.x x x      

Hence 1 = 0. Thus, the contradiction is 

 1 ≠ 0 ∧ 1 = 0. 

So, for every x,  

 
10 0.x x    ∎ 

EXAMPLE 2. Prove: For every x and every y, if x is rational and y is irrational, then x + y is 

irrational.  

 Proof. The sentence is of the type  

   ,x y P Q R      

 where 

  P: x is rational 

  Q: y is irrational 

  R: x + y is irrational 

 For contradiction, assume 

   ,x y P Q R        

 or 

   , .x y P Q R      
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 That is, assume there exists an x and y such that 

  x is rational 

  y is irrational 

  x + y is not irrational (rational) 

 Since x and x + y are rational, 

  ,
a

x
b

  for some integers a and b, b ≠ 0, 

  ,
c

x y
d

   for some integers c and d, d ≠ 0.  

 Then 

  

 
c a

x y x
d b

cb da

db

   




  

 Since cb – da and db are both integers, 

  (x + y) – x is a rational number. 

 But 

  (x + y) – x = y, 

 so y is rational. That is, 

  ~ Q : ~ (y is irrational). 

 Hence we have Q ∧ ~ Q, a contradiction. ∎ 

 Let us compare three modes of proof for proving sentences of the type P → Q. Suppose 

1, , nA A  are the axioms and previously proved theorems. 

RCP:  

 A1, . . ., An, P |– Q 

Contrapositive: 

 A1, . . ., An, ~Q |– ~P 
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Contradiction: 

 A1, . . ., An, P, ~Q |– R˄~R 

EXAMPLES. These are examples of contradiction proofs. 

 

 

1

1

1 1

, , , ,   

, , , ,   

, , , ,  , , ,

n

n

n i i i n

A A P Q P P

A A P Q Q Q

A A P Q A A A A A





 

├

├

├

  

 Comparing, we see that with RCP we assume P with the explicit intention of deducing Q. 

With the contrapositive, we assume ~ Q with the explicit intention of deducing ~ P. But in using 

proof by contradiction, we assume both P and ~ Q and try to deduce any sentence R and its 

negation ~ R. Now ~ R could be ~ P, Q, ~ Ai for some known fact Ai, or could be some sentence 

and its negation deduced from , , , ,  and .i nA A P Q   

 Proof by contrapositive and proof by contradiction with conclusion ~ P are similar; but a 

proof by contradiction assumes P, while proof by contrapositive does not. For example, in the 

proof of EXAMPLE 1, the contradiction is of a previously-known fact. In the proof of 

EXAMPLE 2, the contradiction is of a constituent part of the sentence.  

EXAMPLE 3. Suppose f is a function. 

Prove: If for every p > 0 and every x, f(x + p) = f(x), then f is constant.     (1) 

 Proof. 

 a) Translate sentence (1) to logical symbolism. 

    0 ,  is constantp x f x p f x f          

 b) Form the negation of sentence (1). 

    0 ,p x f x p f x f         is not constant. 

For contradiction, assume the negation of (1). Now f is not constant iff 

   , .x y f x f y    Thus there exists an x and y such that 

     .f x f y   
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 Now 

  x = y → f(x) = f(y) 

 is always true for functions. By contrapositive it follows that 

      .f x f y x y     

 Therefore, since x ≠ y,  

  x < y or y < x. 

 CASE 1) x < y. 

 Then by P1 there exists a 0p   such that 

  .x p y    

 So 

     .f x p f y    

 But since 0,p   by the negation of (1) it follows that  

     f x p f x    

 Hence f(x) = f(y). Thus, we have the contradiction 

          ,f x f y f x f y     

 which was deduced from the negation of (1). 

 CASE 2. y < x.  

 Similar to CASE 1. 

Since we deduced a contradiction in both cases we have proved (1). That is, from 

the negated sentence we deduced an “or” sentence, and from it we deduced a 

contradiction. ∎ 

Exercise Set 2.8 

Prove each of the following by contradiction. At the outset translate each sentence and negate it. 

Note carefully the deduced contradiction. The proofs in Exercises 1-9 refer to the real number 

system. 
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  1.  For every nonzero x and every y, if x is rational and y is irrational, then x y is irrational. 

  2.  For every x and every y,  0 0 0x y xy       

  3.  For every x and every y, 
10 0x x     

  4.  For every x and every y, 
10 0x x     

  5.  For every x > 0, 1x x    (Hint: Use the fact that for every x, x < x +1.) 

  6.  For every x > 0, 
1 2x x    

  7.  a) There exists an irrational number a and an irrational number b such that ab is rational. 

       b) Does this proof by contradiction actually exhibit an a and b such that ab is rational? 

  8.  In the system of real numbers the sentence  

 , 0 0x x x x       

       is true. Suppose there is another real number k such that 

 0 and , .k x x k k x x        

       Deduce a contradiction. 

  9.  In the system of real numbers the sentence  

 ∀x, 1 1x x x      

       is true. Suppose there is another real number k such that 

 1 and , .k x x k k x x        

       Deduce a contradiction. 

The proofs in Exercises 10-15 refer to the integers. Even though we have given a proof by 

contrapositive earlier for some, give a contradiction proof. 

10.  For every x, if x2 is even, then x is even. 

11.  For every x, if x2 is odd, then x is odd. 

12.  For every x, if x is even, then x + 1 is odd. 

13.  For every x, if x is odd, then x + 1 is even. 
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14.  For every x > 0 there exists an even number m such that m > x. 

15.  For every x > 0 there exists an odd number m such that m > x. 

 

The following proof refers to the real number system. 

16.  For every positive number a and every positive number b, 

 .a b a b     
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2.9     PROOFS OF EXISTENCE AND UNIQUENESS 

The sentence  

 There exists an x such that P(x)                                          (1) 

is symbolized 

  .xP x   

The sentence 

 There exists exactly one x such that P(x)                            (2) 

is symbolized  

  ! .xP x   

Other sentences which have the same meaning as (2) are 

 There exists a unique x such that P(x); 

 There exists at least one x such that P(x), and there exists at most one x such that P(x); 

 There exists one and only one x such that P(x). 

Proving Sentences of the Type ∃!xP(x). 

There are two parts to a proof of ∃!xP(x). 

 a) Existence Part. Proving 

  ∃xP(x), 

 that is, prove there is an x such that P(x) is true. 

 b) Uniqueness Part. Here we must prove that if there are two elements x and z such that 

  P(x) is true and P(z) is true 

 then they must be equal. Thus, we must prove 

     , .x z P x P z x z         

EXAMPLE. Prove:  There is a unique x such that for every y, x + y = y + x = y in the real 

number system.  
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Translating to logical symbolism we see that we must prove 

 ∃!x∀y, x + y = y + x = y 

 Proof.  

 a) Existence Part. Prove 

  ∃xP(x) 

 where P(x) is ∀y, x + y = y + x = y. Since  

∀y, 0 + y = y + 0 = y 

 we know that 0 is such an x. 

 b) Uniqueness Part. Prove 

     ,x z P x P z x z         

 Let x and z be arbitrary and assume P(x) ∧ P(z) true. Then 

  ∀y, x + y = y + x = y                                              (1) 

 and 

  ∀y, z + y = y + z = y.                                              (2) 

 Now from (1) we can substitute z for y and get 

  x + z = z + x = z 

 Similarly from (2) we can substitute x for y and get 

  z + x = x + z = x. 

 Therefore  

  x = z. ∎ 

We could have done a proof by contradiction to complete the uniqueness part of the proof: 

From the existence part, we know that 0 is such a number. Now suppose there is another 

number k such that for every x, 

 x + k = k + x = x 

and such that k ≠ 0. Then since this holds for every x, it holds for 0. That is, 
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 0 + k = k + 0 = 0. 

But we also know that k + 0 = k. Thus k = 0, a contradiction. ∎ 

Exercise Set 2.9 

Translate the following to logical symbolism. 

  1.  There is a unique line ℓ such that P ∈ ℓ and Q ∈ ℓ. 

  2.  There is exactly one line containing points P and Q. 

  3.  There is exactly one x such that for every y, x + y = y + x = y. 

  4.  There is one and only one x such that for every y, .x y y x y      

  5.  For every x and every y there is a unique z such that x + y = z. 

  6.  For every x there is a unique y such that x + y = y + x = 0. 

  7.  For every x there is a unique y such that if x ≠ 0, then 1.x y    

Prove: 

  8.  There is exactly one x such that for every y, .x y y x y      

  9.  For every x there is a unique y such that x + y = y + x = 0. 

10.  For every x there is a unique y such that if x ≠ 0, then 1.x y y x      
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2.10     PROOF CREATIVITY 

In the preceding part of this chapter you learned several modes of proof. The intent is that these 

will become part of you as tools of proof in the same way that brushes and paints become part of 

an artist’s tools. Now just because the artist has the tools does not guarantee that he will be able 

to create a painting. Similarly, knowing the modes of proof does not guarantee that you will be 

able to create a proof; but there are some helpful procedures to follow as aids in proof creativity. 

We consider these now. 

Translate to Logical Symbolism. A typical comment made when proofs are attempted is “I do 

not know where to start!” One procedure to follow is comparable to that for solving a problem in 

basic algebra. 

Compare: 

Algebra Problem: The length of a rectangle 

is 3 ft more than the width and the area is 54 

ft2. Find its dimensions. 

STRATEGY: 

1) Translate to an equation:  

     w(w + 3) = 54 

2) Examine the equation, select a method 

of solution from: 

     a) Factoring 

     b) Completing the square 

     c) Using the quadratic formula 

Proof Problem: Every sum of a rational 

number and an irrational number is irrational. 

Prove this. 

STRATEGY: 

1) Translate to Logical Symbolism:  

      ,  rat.   irrat.  irrat.x y x y x y       

2) Examine the translated sentence; select a 

mode of proof from: 

     a) Rule of Conditional Proof 

     b) Contrapositive 

     c) Contradiction 

 

 To solve an algebra problem, we can translate to an equation. Then seeing the structure of 

the equation, we can select a method of solution. Similarly, to create a proof, we can translate to 

logical symbolism. Then seeing the structure of the translated sentence, we can select a mode of 

proof. In algebra you studied methods of solving equations before you attempted applied 

problems. Here we have studied modes of proof first. In the remainder of the book and in any 

future mathematics you study, you will use these modes of proof. 

 Knowing a mode of proof that could be used may still not guarantee success. For 

example, suppose you wanted to attempt to prove a sentence of the type P → Q by using the 
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Rule of Conditional Proof. You want to assume P and deduce Q. A question often asked is 

“How do I get from P to Q?” There is no royal road to success; certainly, knowing to assume P 

and deduce Q is a step in the right direction. The mode of proof provides the structure for the 

proof; building this structure is usually a more creative task. The following are a few procedures 

helpful in carrying out modes of proof. 

Analogy. In a previous example, we gave a proof of 

 a is even → a2 is even. 

In the exercises which followed you proved 

 a is odd → a2 is odd. 

Did you notice that the proofs were analogous? That is, the proof in the example should have 

suggested a way of proving the sentence in the exercise.  

 Thus, an important aid in carrying out proofs is to get ideas from other proofs. This is 

supported by comments of mathematicians who argue that to be good at mathematics you need 

lots of practice and lots of exposure to different proofs.  

Analytic Process. (Working backwards) You want to prove P → Q. Start with Q and try to find 

an R such that R → Q. Then try to find an S such that S → R. Then you might discover that P → 

S. 

 Assume: P 

 Deduce: Q 

 Analytic Process: Q if R (R → Q) 

                                          R if S (S → R) 

                                          S if P (P → S) 

                                          Hence P → S → R → Q 

                                          ∴ P → Q 

When reading a proof of P → Q in a text one may only see the sequence P → S → R → Q and be 

amazed at how the author came about it. If the analytic process were used, it probably was not 

mentioned. 
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EXAMPLE. Consider .ABC    

 

Prove: .AB CB A C     

 Proof. Assume: AB CB   

  Deduce: A C    

Consider  and .A C   These angles would be congruent if they were corresponding 

angles of congruent triangles. You might think of drawing a segment from B to the 

midpoint M of .AC  Then analytically, 

 

 if  (SSS)

 if a)  (Same segment)

                              b)  (  bisects )

                              c)  (Assumed)

A C AMB CMB

AMB CMB BM BM

AM CM BM AC

AB CM

     

 





  

Then the proof would begin with steps (c), (b), and (a); deduce 

 and .AMB CMB A C       ∎ 

Starting with the Conclusion. Care should be taken to note that the use of the Analytic Process 

is logically valid. The process we are about to describe may not be logically valid, but could lead 

to a valid argument (a proof). 

 Suppose you want to prove P → Q.  Start with Q and deduce as much as you can from it. 

For example, you might prove ,Q X S P    and then try to retrace your steps. Now this is 

not a proof because    Q P P Q    is not a tautology. 

 Though the preceding was not a proof you could try to retrace the steps to see if the 

implications could be turned around: 

         

      ?       ?      ?

Q X S P  
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If so, then 

 
P S X Q

P Q

  

 
  

and you have a proof. 

EXAMPLE 1. Given f(x) = 2x + 1 and ε > 0. Find a δ > 0 such that   1 .x f x       

Start with  

   1 .f x     

Then 

 

   1 2 1 1

2

2

2 2

2

f x x

x

x

x

x

 



 

 



     

 

   

   

 

  

Checking backwards we see that each arrow could be reversed; that is, for 2,    

   1 .x f x                                                       (1) 

Often in such a proof an author will say “Let 2  ” and then prove (1). What puzzles one is 

how he knew to let 2.   The author knew because he had started with the conclusion and 

proceeded as above.  This method works when the implications are actually biconditionals. 

EXAMPLE 2. Obtaining extraneous solutions. To solve 

  5 7 ,x x x      

we could assume x is a number such that 5 7 .x x    Note that what we are looking for is the 

solution, but we start by assuming we already have it. Then 
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2

2

5 7 7 5

7 5

11 18 0

9 2 0

9 2

x x x x

x x

x x

x x

x x

      

   

   

   

   

  

What we have shown is 

 5 7 9 2.x x x x         

We must determine the truth of 

 9 2 5 7 .x x x x         

Checking, 

 For 9: 5 9 7 5 4 9,                (True) 

 For 2: 5 2 7 5 3 8.               (False) 

We see that 

 if x = 9 then 5 7 .x x     

Invalid reasoning would have produced the extraneous solution x = 2. 

 Remember to watch your logic when you start with the conclusion! 

Do-Something Approach (Trial and Error). You want to prove P → Q by assuming P and 

deducing Q. You have no particular way to get from P to Q; but start out, get involved, do 

something, try different approaches, prove all you can. You might happen onto the proof. This 

could be illustrated as follows: 

 P → R → T → S                ?, 

 P → M → Y → Z → V       ?, 

 P → W → X → Q              success! 

 The do-something approach can also be used with the modes of proof. You try RCP and 

get nowhere. Maybe, you can prove the contrapositive.  

 When reading proofs in mathematics texts and journals, one is not aware of the blind 

alleys and unsuccessful attempts preceding a successful proof. This leads one to think the 
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established mathematician never follows a blind alley or makes a mistake. Trial and error is very 

much a part of mathematical creativity.  

Use of Definitions. Another helpful procedure is to recall all relevant definitions. It is a tendency 

to read a definition and ignore its importance in later proofs. To illustrate, suppose the following 

definition is given in set theory. 

Definition. For any two sets A and B, 

 A ⊆ B iff for every x, x ∈ A → x ∈ B. 

Later the following theorem is to be proved: 

Theorem. For any two sets A and B, 

 A ∩ B ⊆ A. 

To accomplish the proof one would let A and B be arbitrary sets and prove A ∩ B ⊆ A. A 

stumbling block may be met at this point unless one uses the definition to interpret what it means 

for A ∩ B to be contained in A. That is, using the definition it follows that one must prove: 

 For every x, x ∈ A ∩ B → x ∈ A. 

Use of Previously-Proved Theorems. It is also helpful in starting a proof to examine 

previously-proved theorems for results which might be relevant to the proof. 

Let us summarize some strategies for proof creativity: 

 (1) Translate to logical symbolism. 

 (2) Examine the translated sentence; select a mode of proof. 

 (3) After a reasonable effort with one mode of proof, try another. 

 (4) Examine analogous proofs for hints. 

 (5) Use the definitions. 

 (6) Use the results of previous theorems. 

 (7) Realize that trial and error are very much a part of proof creativity. 

As you continue in mathematics, it may be of help to read and re-read this section. 

Exercise Set 2.10 

  1.  Describe how the analytic process could be used to prove the contrapositive of P → Q. 
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  2.  Describe how the analytic process could be used to prove P → ~ Q. 

For Exercises 3-10, assume the following are proved: 

 a) A ∪ B = B ∪ A 

 b) (A ∪ B) ∪ C = A ∪ (B ∪ C) 

 c) x ∈ ℚ ∧ y ∈ J → x + y ∈ J 

 d) The solution of 5 7x x    is x = 9. 

 e) A ⊆ B → B A    

 f)  f g f g       

 g) A ∪ (B  ∩ C) = (A ∪ B) ∩ (A ∪ C) 

 h)  A B A B     

Suppose that you wanted to prove the sentences in Exercises 3 through 10. State an analogous 

proof for an above sentence you might examine for a hint. 

  3.  B A A B      

  4.   f g f g       

  5.  A ∩ B = B ∩ A 

  6.  There is a solution for 2 1 2x x     

  7.  x y J x y J        

  8.     A B C A B C   

  9.       A B C A B A C   

10.   A B A B     

11.  Find the solution for Exercise 6. 

12.  Given f(x) = 3x + 2 and 휀 > 0. Find a 𝛿  > 0 such that   2 .x f x       
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CHAPTER 3     SETS 

 

 

 

3.1     BASIC SET PROPERTIES 

This chapter serves both as practice of the previous chapters and as a preparation for advanced 

courses. 

 Underlying every mathematical system is the theory of sets. In this chapter we prove 

many properties of sets. We will be considering set theory less formally than it could be studied. 

Such a study belongs to more advanced courses. 

 The notion of number is undefined in mathematics. Nevertheless, we have an idea of 

what a number is. For example, we get the idea of 3 by thinking of three objects. Similarly, the 

notions of sets and elements of sets are undefined even though we have an idea of what they are. 

 We consider a universal set U. (The word universal is also undefined.) Recall that  

a ∈ A means a “is an element of” A (∈ is an undefined relation between the elements of sets and 

sets themselves).pa 

AXIOM 1 (Equality). ,A B x x A x B       

AXIOM 2.  a)  , ,A U x x A     

                    b)  , .x x U    
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 Axiom 2 asserts that every element is in the universal set. 

AXIOM 3.  a)  , ,A x x A    

                    b)  , .x x    

 Axiom 3 asserts that no element is in the empty set. 

AXIOM 4. U    

 Axiom 4 restates what we mentioned in Chapter 1; we only consider non-empty universal 

sets. 

AXIOM 5.  ,A A x x    

 Axiom 5 and Axiom 6 which follow attempt to eliminate some difficulties with sets that 

arose when Georg Cantor (1845-1918) developed a set theory between 1874 and 1884. 

EXAMPLES. Each of the following is false. 

    , , , ,a b a b    

    , 3 3 .      

 Let us compare 3 and {3}. Why do we know 3 ≠ {3}? We could justify this by Axiom 5. 

But intuitively the idea of 3 is a number and the idea of {3} is a set. The number 3 is abstracted 

out of sets of three objects. But {3} is a set with one object, the number 3. Thus, the ideas are 

different. 

 Let us compare   and  .  Again      by Axiom 5, but let us think intuitively. 

The symbol   stands for the empty set. It has nothing in it. The symbol    stands for a set 

which has one element, the empty set itself. You might think of   as an empty box and    as 

an empty box in a box. The two notions are different. 

Definition 1. ,A B x x A x B       

EXAMPLES. Each of the following is true. 

                  3 3 , 3 3 , 3 3 , 3 3,4 , , , ,             

Note that   is both an element of and a subset of  .  That is, it is true that 

     and ,      
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but the following are false: 

      3 3  and 3 3 .    

The first is false by Axiom 5. The second is false because 3 is not a set.  

AXIOM 6. If for every x ∈ U, P(x) is a statement about x, then there exists a set B such that 

 a) x ∈ B ↔ P(x) is true 

and b)   .B x x U P x     

Note that Axiom 6 asserts the existence of a set defined by an open sentence whose variable 

represents elements of U.  It is possible that the set thus described is actually the empty set. 

Definition 2.  a)  A B x x A x B       

                       b) x A B   x A x B     

Definition 3.  a)  A B x x A x B       

                       b) x A B x A x B        

Two sets are disjoint iff A ∩ B = .   

Definition 4.  a)    A x x A x x U x A         

                       b) x A x A     

 Part b) of each of Definitions 2-4 follows by application of Axiom 6, and, though 

somewhat redundant, is stated for convenience.  

 Now we prove some theorems. You should make use of the logic and modes of proof 

previously considered. In many proofs, we mention the mode(s) of proof used. When a mode is 

not mentioned, you should decide what is used. The ANALYSIS notes, listed at the end of some 

of the proofs, explain how the proofs might have been created. Of importance is to note how 

closely the logic results relate to many of the proofs. 
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Theorem 1. ,A x x A     

 Proof. Mode of Proof: Iff-string. 

  
, ,  by Axiom 3

, ,  by properties of negation.

A x x A

x x A

  

  
   

                                              ∎ 

 ANALYSIS: Recollection of rules of negation. 

Theorem 2. For any subset A of U, .A   

Proof. Let A be an arbitrary subset. We must prove .A  How would we prove this? 

Remember to use definitions. By Definition 1, we must prove , .x x x A    By 

Axiom 3, we know , .x x   That is for every x ∈ U, x  is false. Thus, the 

conditional 

 x x A    

always has a false antecedent, and is always true. Hence .A  ∎ 

Theorem 3. A B A B B A       

 Proof. Mode of Proof: Iff-string. 

  

   

   

       

, ,  by Axiom 1

,  definition of 

, , ,  by the rule of reasoning

       

,  by Definition 1.  

A B x x A x B

x x A x B x B x A

x x A x B x x B x A

x P x Q x xP x xQ x

A B B A

     

          

         

          

   

  

                                                                                                                ∎ 

Theorem 3 provides a very useful way of proving two sets equal. 

Theorem 4.  a) A B B A     

                     b) A B B A     

 Proof.  

a) We use Axiom 1 to prove this. That is, we prove , .x x A B x B A       Let x be 

arbitrary. Then  
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,  by Definition 3

,  by the tautology 

,  by Definition 3.

x A B x A x B

x B x A P Q Q P

x B A

     

      

  

  

                                                                                   ∎ 

ANALYSIS: The analogy between A B B A    and the tautology P Q Q P    

provided the idea for the proof. 

b) Left as an exercise. 

Theorem 5.  A A    

 Creating the Proof: Can you think of an analogous tautology which might help? 

 Proof. Let x be arbitrary. 

  

 

 

 

 

,  by Definition 4

,  by definition of the negation symbol

,  by Definition 4

,  by definition of the negation symbol

,  by the tautology .

x A x A

x A

x A

x A

x A P P

   

 

 

 

  

  

                                                                                                  ∎ 

Theorem 6. A B A B      

 Proof. Mode of Proof: Iff-string. 

  

 

   

, ,  by Definition 1

,  by a rule of reasoning for negation

, ,  by the tautology 

, ,  by Definition 4

, ,  by Definition 3

,by Theorem 1.

A B x x A x B

x x A x B

x x A x B P Q P Q

x x A x B

x x A B

A B

    

    

       

    

   

  

  

                                                                             ∎ 

Theorem 7. A B A B      

 Proof. Left as an exercise. 



117 
 

Theorem 8.  A B A B       

 Proof. We must, by Axiom 1, prove 

   ,x x A B x A B          

 Let x be arbitrary.  

 

   

 

 

   

,  by Definition 4

,  by definition of the negation symbol 

,  by Definition 2

,  by the tautology 

,  by Definition 4

,  by Definition 3.

x A B x A B

x A B

x A x B

x A x B P Q P Q

x A x B

x A B

    

  

   

      

    

   

  

                                                                              ∎ 

Theorem 9.  A B A B       

 Proof. Left as an exercise. 

Theorem 10.  a)      A B C A B A C        

                        b)      A B C A B A C        

 Proof. 

 a) Let x be an arbitrary element of U. Then 

 

   

 

   

     

   

,  by Definition 3

,  by Definition 2

,  by the tautology

        

,  by Definitions 2 and 3.

x A B C x A x B C

x A x B x C

x A x B x A x C

P Q R P Q P R

x A B A C

       

     

       

     

    

  

                                                                                                                 ∎ 

ANALYSIS: Note the similarity between      A B C A B A C       and the 

tautology      .P Q R P Q P R        
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b) Left as an exercise. 

Theorem 11.  a) A A B    

                        b) A B A    

 Proof. 

 a) 

                  
 ,  by the tautology 

,  by Definition 2.   

x A x A x B P P Q

x A B

      

  
  

                                                                      ∎ 

 b) Left as an exercise. 

Theorem 12. A B B A      

 Proof.  

 

 

 

 

,  by Definition 1

,  using the contrapositive of 

,  by Definition 4

,  by Definition 1

A B x x A x B

x x B x A x A x B

x x B x A

B A

    

      

    

  

  

 Hence A B B A     for every two subsets A and B of U. ∎ 

ANALYSIS: Note the similarity between 

    and the tautology .A B B A P Q Q P         

Exercise Set 3.1 

When doing these proofs note what mode(s) of proof you are using. Also, include your own 

analysis notes; that is, what provided the bud of the idea for the proof. For example, did you use 

a proof analogous to a previous one, did you use the do-something approach, and so on? You 

may use any previous theorem or exercise when doing a proof. Compare your proof with that of 

the answer key; they may differ.  

Let A, B, and C be arbitrary subsets of U. Prove the following. 

  1.  Theorem 4-b) 

  2.  Theorem 7 



119 
 

  3.  Theorem 9 

  4.  Theorem 9, but give a proof which uses Theorems 5, 7, and 8 

  5.  Theorem 10-b) 

  6.  Theorem 11-b) 

  7.  a) A ⊆ A   b) A = A 

  8.  U    

  9.   iff A B A B U     

10.     A B C A B C       

11.     A B C A B C       

12.  A A   Hint: Use Theorems 2 and 11. 

13.  A A U     Hint: P P  is a tautology. 

14.  A B A B     

15.  U    

16.  A    Hint: Theorems 2, 3, and 11. 

17.  A U   

18.  a) A U A    b) A U U    

19.  A A    

20.  A B B A      

21.  A A A    

22.  A A A    

23.  A B A B B      Hint: Start with A B B   and try to find a helpful tautology. 

24.  A B A B A      

25.  A A    

26.  If A ⊆ B and B ⊆ C, then A ⊆ C 
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27.  If A ⊆ B, then A C B C     

Definition 5.  

 A B x x A x B

A B

    

 
  

         = the difference of A and B 

 

28.  A A    Hint: Use Exercises 2 and 12. 

29.  A A    

30.   A B B B A A       

31.     A B C A C B       

32.     A B C A B C       

33.  Let ℤ = the set of integers. Show that ,A B A B B A      is false by finding two sets in ℤ 

for which .A B B A     

Definition 6.  

 

   

A B x x A B x A B

A B A B

      

   
  

            = the symmetric difference of A and B 

 

34.  A B B A     
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35.     A B C A B C       

36.       A B C A B A C        

37.     A B A B B A       

38.  A B A B A B       

39.     A B A B A B       
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3.2     MORE SET PROPERTIES 

Power Set. 

Definition 7.  A  the power set of A =  .B B A  Thus, ℘(A), the power set of A, is the set 

of all subsets of A.  

For example, the set {a, b} has the following subsets: 

,  {a}, {b}, {a, b}. 

Thus ℘(A)       , , , , .a b a b   Note that ℘(A) is a set whose elements are sets. 

Indexed Unions and Intersections. We now consider the problem of defining larger unions and 

intersections of sets. Consider three sets 1 2 3, , and .A A A  We know from previous results that 

    1 2 3 1 2 3 .A A A A A A       

This is the associative law for unions. It says, in effect, that to find the union of three sets we 

find the union of any two, then form the union of that set with the third set. This says that we 

could drop the parentheses and use the notation 

 1 2 3.A A A    

Let us look at this from a logical standpoint. 

 1 2 3 1 2 3 iff  or  or .x A A A x A x A x A        

That is, there exists an  1,2,3i  such that ,ix A  or x is in the union iff it is in one of the sets.  

 Similarly, 1 2 3 1 2 3 iff  and  and .x A A A x A x A x A       That is, for every 

 1,2,3 , ,ii x A   or x is in the intersection iff it is in all the sets. 

 This leads us to the following definition. 

Definition 8. For any finite collection of sets  1, ,  when 1,2, , ,nA A F n  we define  

1 1

,  or ,  and ,  or ,
n n

i i i i

i i F i i F

A A A A
   

 as follows: 

 a)  
1

,  such that 
n

i i i

i i F

A A x i F x A
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 b)  
1

,
n

i i i

i i F

A A x i F x A
 

       

EXAMPLE 1. Suppose 

        1 2 3 42,11 , 3,5,7,11 , 4,6,11 ,  and 5,11 ,A A A A      

where  1,2,3,4 .F   Then 

 

 

 

4

1

4

1

2,3,4,5,6,7,11 ,

11 .

i i

i i F

i i

i i F

A A

A A

 

 

 

 

  

F is called an indexing set and      1 2 3 4 1
, , , ,  or ,  or ,

n

i ii i F
A A A A A A

 
 is called a family, or 

collection of sets. 

EXAMPLE 2. Suppose 

 
     

 

1 1
1 2 2

1 1 1 , 1 1 , , 1 1 ,

     when 1,2, , .

n n
A x x A x x A x x

F n

           


  

Then 

 

 

 

1

1

1

1

1 1 ,

1 1 1 .

n

i i nn

i i F

n

i i

i i F

A A x x A

A A x x A

 

 

     

     

  

Theorem 13. For any finite family of sets  
1

1
,

n

i i
A




  

 a) 
1

1

1 1

n n

i i n

i i

A A A




 

 
  
 

  

 b) 
1

1

1 1

n n

i i n

i i

A A A




 

 
  
 

  

 Proof of a). We use Theorem 3 to do the proof. We prove each set is a subset of the other.  

  Let 
1

1

.
n

i

i

x A




  Then there exists an  1,2, , , 1i n n   such that .ix A  Since  
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     1,2, , , 1 1,2, , 1 ,n n n n     it follows that  ,  for 1,2, , ,ix A i n   in 

which case 
1 1

1 1

;  or . Thus .
n n

i n i n

i i

x A x A x A A 

 

 
   

 
  

 Let 
1

1

.
n

i n

i

x A A 



 
 
 

 The proof that 
1

1

n

i

i

x A




  is left as an exercise. ∎ 

 Note that Theorem 13 looks very much like a recursive definition. In fact, we could have 

taken Theorem 13 as a definition and proved Definition 8 as a Theorem. We used Definition 8 

because it extends nicely to the case where we are finding unions and intersections of infinite 

families of sets. Before we do this let us use Theorem 13 to prove another property of sets. It is a 

more general case of   ,A B A B      proved earlier.  

Theorem 14. For any finite family of sets 1, , ,nA A   

 
1 1

n n

i i

i i

A A
 

   
 

  

(The complement of the union is the intersection of complements.) 

 Proof. Mode of Proof: Mathematical induction, where 

  
1 1

:
n n

i i

i i

P n A A
 

   
 

  

 1) BASIS STEP. Prove P(1):  1 1 .A A   This is clear. 

 2) INDUCTION STEP. Prove:    1 .k P k P k       

 Assume P(k): 
1 1

k k

i i

i i

A A
 

   
 

  

 Deduce P(k + 1): 
1 1

1 1

k k

i i

i i

A A
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1

1

1 1

1

1

1

1

1

1

Now ,  by Theorem 13

,  by , where we consider

       to be one set and  to be the other

,  by 

k k

i i k

i i

k

i k

i

k

i k

i

k

i k

i

i

A A A

A A A B A B

A A

A A P k

A





 













     
     

    

        
 

    
 


1

1

.
k

i





  

                                         ∎ 

 The following are examples of infinite families of sets.  

EXAMPLE 3. For every i ∈ ℕ, the natural numbers, we have a set Ai as follows:  

     1 21 1 , 2 2 , , , .nA x x A x x A x n x n             There is an infinite 

number of sets in this family.  

EXAMPLE 4. For every r ∈ ℝ, the real numbers, we have a set Ar as follows: 

  .rA x r x r      

Although we will not prove it here, there are more sets in  r r
A


 than there are in   .i i

A


 We 

now extend Definition 8. 

Definition 9. For any family  i i F
A


 and non-empty indexing set F,  

 a)   such that i i

i F

A x i F x A


      

 b)  ,i i

i F

A x i F x A


      

EXAMPLES 

a) For EXAMPLE 3 above: 

 i

i

A


 (or as usually expressed 
1 ii
A




) = ℝ, the set of real numbers; 
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  1

1

1 1 .i

i

A A x x




       

b) For EXAMPLE 4 above: 

  , 0 .i i

i i

A A
 

    

Note the differences. 

Exercise Set 3.2 

  1.  Suppose        1 2 32,4,5 , 2,3,5,7 , 1,2,3,5 ,  where 1,2,3 .A A A F      

       Find: 

       a) 
3

1

,  or i i

i i F

A A
 

    b) 
3

1

,  or i i

i i F

A A
 

  

   2.  Suppose  

        1 1
1 2 2

0 1 , 0 , , 0  where 1,2,3, , .n n
A x x A x x A x x F n            

         Find: 

         a) 
1

,  or 
n

i i

i i F

A A
 

                                   b) 
1

,  or 
n

i i

i i F

A A
 

  

  3.  Prove: For any finite family of sets  
1
,

n

i i
A


  

 
1 1

.
n n

i i

i i

A A
 

   
 

  

  4.  Let      1 21 , 2 , , , .nA x x A x x A x n x       Find: 

       a) 
1

n

i

i

A


        b) 
1

n

i

i

A


      c) 
1

i

i

A




   d) 
1

i

i

A




  

  5.  For any r ∈ ℝ, let  .rA x r x   Find: 

       a) r

r

A


                                                    b) r

r

A
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  6.  For any i ∈ ℕ, let   and  is a multiple of .iA x x x i   Thus  2 2,4,6,8, ,A    

        3 3,6,9,12, ,A  and  , 2 ,3 , .nA n n n  Find: 

       a) 2 3A A   b) 4 5A A       c) 5 8A A    d) 
1

i

i

A




  e) 
1

i

i

A




  

  7.  Prove: For any finite family  
1
,

n

i i
A


 and any set B,  

       a)  
1 1

n n

i i

i i

B A B A
 

 
 

 
  

       b)  
1 1

n n

i i

i i

B A B A
 

 
 

 
  

  8.  Prove: For any family  i i F
A


 and non-empty indexing set F,  

       a) 
i i

i F i F

A A
 

   
 

  

       b) 
i i

i F i F

A A
 

   
 

  

  9.  Prove: For any family  i i F
A


 and non-empty indexing set F, if 0 ,i F  then  

 
0

.i i i

i F i F

A A A
 

    

Definition 10. For any family  i i F
A


 and non-empty indexing set F,  

 
 

 

 is ;

 is .

i ii F
i F

i i ji F

A A

A i j A A






 

    

disjoint 

pairwise disjoint 
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10.  Let      1 2 32,3,4 , 3,4,5 ,  and 6,7,8 .A A A     

       a) Find: 
3

1 ii
A


  

       b) Is  
3

1i i
A


 disjoint? 

       c) Find: 1 2 2 3 1 3, ,  and .A A A A A A     

       d) Is  
3

1i i
A


 pairwise disjoint? 

       e) Prove or disprove:  i i F
A


 disjoint →  i i F

A


 pairwise disjoint. 

       f) Prove or disprove:  i i F
A


 pairwise disjoint →  i i F

A


 disjoint. 

Prove the following. Hint: Try contrapositive or contradiction. 

11.  For every two subsets A and B of U,  or .A B A B      

12.  For every subset A of U, .A A   

13.  For every two subsets A and B of U, .A B A     
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3.3     RELATIONS 

Ordered Pairs. Let us recall from algebra the meaning of the symbolism (a, b), called an 

ordered pair. Below is a graph of some ordered pairs. Look at the graph and try to recall some 

properties of ordered pairs. 

 

Note that none of the pairs are the same. Perhaps you recall the property 

 (a, b) = (c, d) ↔ a = c and b = d. 

For the pair (a, b), a is called the first coordinate and b is the second coordinate. The words 

“first” and “second” suggest the notion of order. By the above property, two ordered pairs are 

equal if their first coordinates are equal and their second coordinates are equal.  

 We can prove the above property via our set theory by means of a rather strange-looking 

definition. 

Definition 11.       , , ,a b a a b   

From this we can first prove that, given the elements a and b, the pair (a, b) exists. The sets 

    and ,a a b  exist, thus the set     , ,a a b , or (a, b), exists.  Note that in the two-element set 

{{a}, {a, b}}, the element {a, b} shows the unordered pair, while the element {a} shows the first 

coordinate. 

Theorem 15.    , ,  and a b c d a c b d      

 Proof.  

a) Prove:     and , , .a c b d a b c d     Note that when we are trying to prove 

   , ,a b c d we are proving set equality. From a = c and b = d it follows that 

        and , , .a c a b c d   Thus              , , , , ,  or , , .a a b c c d a b c d    

                                            
 This proof could be skipped if time is short. 
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b) Prove:    , ,  and .a b c d a c b d     From    , ,a b c d  it follows that  

         , , , , .a a b c c d  From the definition of set equality, it follows that  

                  and , ,  or ,  and , .a c a b c d a c d a b c      

 CASE 1.         and , , .a c a b c d   Then a = c from    .a c  Thus since  

a = c and    , ,a b c d  it follows that b = d. 

CASE 2.        ,  and , .a c d a b c   From    ,a c d  it follows that there is 

only one element in  , ,c d  or a = c = d. Similarly, from    ,a b c  it follows 

that a = b = c. Thus a = b = c = d; in particular, a = c and b = d. ∎ 

 One could extend Definition 11 to define ordered triples,  , , ,a b c  and ordered n-tuples 

 1, , ,na a  but we shall omit this for the sake of expediency. 

Definition 12. Given two sets A and B, the Cartesian product, or cross product, is defined  

   ,  and A B x y x A y B      

(A × B is the set of all ordered pairs with first coordinate in A and second coordinate in B.) 

EXAMPLE 1.    1,2,3 , 3,4A B    

             1,3 , 1,4 , 2,3 , 2,4 , 3,3 , 3,4A B    

             3,1 , 3,2 , 3,3 , 4,1 , 4,2 , 4,3B A    

Note that, in general, A × B ≠ B × A. 

EXAMPLE 2.  1,2A    

         1,1 , 1,2 , 2,1 , 2,2A A    

EXAMPLE 3.  , ,A a b B    

 A B    

 For the set ℝ of real numbers we can think of ℝ × ℝ as the set of points in a plane. 
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Relations. Before we define relation, let us motivate the notion. Think of the relation “is a 

parent of”; then the following is a true sentence: 

 Your father is a parent of you. 

There is a first person, father, and a second person, you. We can then abstract the notion of an 

ordered pair: 

 (father, you) 

In fact, there are lots of such ordered pairs if we consider the set of all people. 

Think of the relation “less than.”  

 

 

 

 

 1 1
2 2

                               ,  

  2 3                              2,3

3 5                              3,5

                              ,

x y x y

 





  



  

Note that 2 < 3 establishes a “relation” between a first number 2 and a second number 3. We can 

again abstract the notion of an ordered pair (2, 3).  

Definition 13. Given sets A and B. A relation from A to B is a subset of A × B. That is, 

(Greek letter rho) is a relation from A to B iff .A B    If A = B, then   is a relation on A.  

 It is possible to have many relations from a set A to a set B. 

EXAMPLE 4. Let    1,2,3 , 1,2,3,4,5,6,7,8,9 ,A B   and       1,1 , 2,4 , 3,9 .   Note that 

   2,4 ; 2,4  is in the relation .  We often write 2 4.  Sometimes we can describe a relation 

with a sentence. For the above, 

   2,  and  and .x y x A x B y x       

When it is clear what the sets are, we may abuse the notation and refer to the sentence 2y x  as 

a “relation.”  

EXAMPLE 5. ℝ = the real numbers. 

   , , ,  there exists an 0 such that x y x y m x m y         

Thus  2,3 ,  or 2 < 3;  5,7 ,   or −5 < 7. The relation < is a relation on ℝ.  
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 We can graph relations as follows. The graph of a relation is the plot of all ordered pairs 

in the relation.  A graph is a geometric picture of the relation. 

EXAMPLE 6.    1,2,3 , 1,2,3,4A B    

 
  
            

, , ,  for some positive 

1,2 , 1,3 , 1,4 , 2,3 , 2,4 , 3,4

x y x A y B x m y m     


  

Graph of < : 

 

EXAMPLE 7. The following is a graph of < on ℝ: 

 

EXAMPLE 8. ℝ = real numbers 

   2 2, 1x y x y      
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EXAMPLE 9. ℝ = real numbers 

   , 1x y x y      

 

Definition 14. Given that   is a relation from A to B, the domain of ,  D , and the range of 

,  ,R are defined as follows: 

 a)    and , ,D a a A y B a y        

The domain is the set of all first coordinates of ordered pairs in .   

 b)    and , ,R b b B x A x a        

The range is the set of all second coordinates of ordered pairs in .   

EXAMPLES. 

a) In EXAMPLE 4:    1,2,3 , 1,4,9D R     

b) In EXAMPLE 5: ,D R     

    This follows since every real number is less than some other real number, and every real  

     number is greater than some real number. 

Definition 15. Given that   is a relation from A to B, the inverse of ,  denoted 1,   is a 

relation from B to A defined: 

     1 , ,b a a b      

Thus    1, , .b a a b     The relation 
1 
 results from interchanging the ordered pairs in 

.   
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EXAMPLE 10.    1,2,3 , 1,2,3,4A B    

 
            

              
1

1,2 , 1,3 , 1,4 , 2,3 , 2,4 , 3,4

2,1 , 3,1 , 4,1 , 3,2 , 4,2 , 4,3


 

 
  

Perhaps you discovered that  
1

.


    (This is set equality.) 

EXAMPLE 11.    1,2,3 , 1,2,3,4,5,6A B    

          , 2 1,2 , 2,4 , 3,6x y y x      

Note the graph of   with the blue dots: 

 

Now 

 
  
      

1 , 2

2,1 , 4,2 , 6,3

y x y x   


  

Note the graph of 1   with the red dots. We can also describe 1   as follows: 

   1 , 2x y x y     

This is in keeping with the custom of having the first coordinate on the horizontal or x-axis. The 

graph of 1   is thus the mirror image or reflection across the line y = x of the graph of .  To 

find a sentence to describe 1  , we not only interchange the variables y and x, but we rename the 

variable x for y and y for x. 

EXAMPLE 12. Given ℝ = real numbers and   , log , or :y

ax y y x x a      
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a) Describe 1.    

      1 , log ,  or x

ax y x y y a      

b) Graph 1 and     using the same set of axes. 

 

EXAMPLE 13. Given ℝ = real numbers and 

   2, .x y y x     

a) Describe 
1 : 

  

       1 2, .x y x y      

b) Graph 
1 and   
 using the same set of axes. 

 

Exercise Set 3.3 

Let    , , , 5,6 .A a b c B   Find: 

  1.  A B    2. B A   3. A A   4. B B   5.  Does ?A B B A     
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Write three ordered pairs in each relation. 

  6.    2 2, , , 1L x y x y x y       

  7.    2, , ,M x y x y x y      

  8.  Find the domain and range of the relations in Examples 6-9. 

  9.  a) Graph  
2 2

, , , 1 .
4 25

x y
x y x y

 
    

 
  

       b) Find the domain and range. 

Prove. 

10.      ,a a a   

11.     , ,a b b a a b     

12.  Determine whether true or false. 

        a)    , ,a b b a      b)    , ,a b b a   

        c)    , ,a b a b      d)    ,a a a   

13.  Given      , , , , , 2,3 .A a b B a b c C    Find: 

       a) A B    b) A C    c) ;  compare  and B C A C B C     

       d) B C    e)  A B C    f)      ;  compare  andA B A C A B C      

             A B A C    

       g) B C    h)  A B C    i)      ;  compare  andA B A C A B C      

             A B A C    

Prove: For any sets A, B, C,  

14.  A B A C B C       

15.       A B C A B A C        
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16.       A B C A B A C        

17.  A A B B A B       

18.  Consider the following relation   from A to B: 

                 , , 2,3,4 , ,2 , ,3 , ,4A a b B a a b     

       Find: 

       a) Dρ  b) Rρ     c) 1     d) 1D
    e) 1R

    

       f) Compare Dρ with 1R
     g) Compare Rρ with 1D

   

19.  Prove: If   is a relation from A to B, then 1 1 and .D R R D       

Graph each of the following relations on ℝ. 

20.    , 3 1x y y x      21.    , 1x y x y    

22.    2 2, 4x y x y      23.    2 2, 4x y x y    

24.    , 2x y x y      25.    2,x y y x   

26.            2 2 2, 4 , 2 2 and 2 2,2 , 2,2x y x y x y x y x           

For each of the following relations   on ℝ describe 1   and graph 1 and     using the same set 

of axes. 

27.    , 3 1x y y x        28.    3,x y y x     

29.   
2 2

, 1
9 4

x y
x y

 
   
 

   30.    , sinx y y x     

31.    2 2, 1x y x y        32.    , 1x y xy     

33.    , sin  and 0 2x y y x x           34.    , 2x y x y     
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3.4     EQUIVALENCE RELATIONS 

In this section, we will be considering relations on a set A; that is, subsets of .A A  Below are 

some relations. We will refer to these throughout this section. 

  Relation     Set 

 1 :  “equal,”       1,1 , 2,2 , 3,3     1,2,3   

 2 :  “on the same puzzle piece”  Set of atoms that make up puzzle 

 3 :         ℝ 

 4 :        Set of lines in a plane 

 5 :  “is the father of”    People 

Definition 16. Let   be a relation on A.  

(R)   is reflexive iff for every  , ,  (or, ).a A a a a a    (Every element of A is related to 

itself.) 

EXAMPLES. 

1) 1  on  1,2,3  is reflexive, but     1,1 , 2,2   on  1,2,3  is not reflexive since  3,3 .

The universal quantifier is quite important here. 

2) 2  is reflexive since each atom belongs to the same puzzle piece as itself. 

3) 3  is not reflexive since, for example, 2 2.   

4) 4  is not reflexive. A line cannot be perpendicular to itself. 

5) 5  is not reflexive. One cannot be the father of himself. 

Definition 17.  

(S)   is symmetric iff for every    , , , , .a b A a b b a      (For any , ,a b A  if a is 

related to b, then b is related to a.) 
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EXAMPLES. 

1)  is symmetric. For any , , .a b A a b b a     The relation         1,2 , 3,3 , 2,1 , 2,3  is not 

symmetric. 

2) 2  is symmetric. If a is on the same puzzle piece as b, then b is on the same piece as a. 

3) < is not symmetric. 2 3 and 3 2.    

4)   is symmetric. If 1 2 ,l l  then 2 1.l l   

5) 5  is not symmetric. a is the father of b   b is the father of a. 

Definition 18.  

(T)   is transitive iff for any  , , , ,a b c A a b    and    , , .b c a c     (For any 

, , ,a b c A  if a is related to b and b is related to c, then a is related to c.) 

We might think of the transitive property as the “bridge” property. 

EXAMPLES. 

1) = is transitive. If a = b and b = c, then a = c. The relation       2,3 , 3,1 , 2,1  is also transitive 

but     1,2 , 2,3  is not. 

2) 2  is transitive. If a is on the same piece as b and b is on the same piece as c, then a is on the 

same piece as c. 

3) < is transitive. If a < b and b < c, then a < c. 

4)   is not transitive. We illustrate this in two ways.  
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 a) 1 2 2 3 1 3 and  and l l l l l l     

 

 b) 1 2 2 1 1 1 and  and l l l l l l     

 

Part b) illustrates an important point about quantifiers. When we say, “For any , , ,a b c ,” we do 

not exclude the possibility that they may be equal. 

5) 5  is not transitive.  For a is the father of b and b is the father of c   a is the father of c. That 

is, a grandfather is not the father of his grandson. 

Definition 19. A relation   on A is an equivalence relation iff it is reflexive, symmetric, and 

transitive. 

Accordingly, an equivalence relation is also called an R-S-T relation. 

EXAMPLES. The relations = and 2  are equivalence relations. The relations 3  to 5  are not. 

Equivalence classes. When we have an equivalence relation ,  it is typical to read “ ,a x ” or  

“  ,a x  ” as “a is equivalent to x.” 

Definition 20. Let   be an equivalence relation on A. For any ,a A  the equivalence class of a, 

  ,E a  is defined: 

      and , ,  or E a x x A a x a x      

(The equivalence class of a,   ,E a  is the set of all elements equivalent to a.) 
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Notations such as  cl a  and [a] are also used for equivalence classes. The following examples 

refer to the relations described in previous exercises or examples. 

EXAMPLES. List or describe the equivalence classes. 

 

                  6

                Set                           Equivalence Relation                                Equivalence Classes

1)        1,2,3,4       1,1 , 2,2 , 3,3 , 4,4 , 4,2 , 2,4             1 1

                  

E  

                                                                                                    2 2,4 4

                                                                                                

E E 

   

2

                 3 3

2)      Atoms of                      "on the same puzzle piece"                      The pieces of the puzzle.

          a puzzle 

3)      Triangles in a                         

E





11

  "similarity"                                   Each equivalence class

          plane                                                                                        is the set of triangles  

                                                                                                               similar to a given one; 

                                                                                                               that is, whose sides are 

                                                                                                               proportional.

  

Now look carefully at each collection of equivalence classes we have considered. See how many 

conjectures you can make. Then consider the following theorem. 

Theorem 16. Let A be a nonempty (universal) set and   be an equivalence relation on A. Then: 

a) For any  ,a A a E a    

    (For each equivalence class    , .)E a E a     

b)      ,E a E b a b      

    (Equivalence classes E(a) and E(b) are equal iff a is equivalent to b.) 

c) For any E(a) and E(b),         or E a E b E a E b     

    (Equivalence classes are either equal or disjoint.) 

Proof of a): Let .a A  Then  ,a a   by the reflexive property. Thus, by Definition 20, 

 .a E a   
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Proof of b):  

1) Prove:      , .E a E b a b     Assume E(a) = E(b). By part a) we know  .a E a  Since 

E(a) = E(b),  .a E b  Then, by Definition 20,    ,  and by symmetry , .b a a b     

2) Prove:      , .a b E a E b    Left as an exercise. 

Proof of c): Let E(a) and E(b) be arbitrary equivalence classes. We know by the tautology 

P P  that 

 E(a) = E(b) or E(a) ≠ E(b). 

Thus, all we really need to prove is that  

         .E a E b E a E b      

We prove this by proving its contrapositive:  

        .E a E b E a E b     

Assume     .E a E b    Then there exists an x such that     and .x E a x E b   Thus, by 

Definition 20,  

    ,  and , .a x b x     

Then by symmetry  ,x b   and by transitivity,  , .a b   So, by part b), E(a) = E(b). ∎ 

Exercise Set 3.4 

Translate the definition of each of the following to logical symbolism and write the negation. 

  1.  reflexive   2.  symmetric   3.  Transitive 
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Consider: 

 

              

        
6

7

                             Relation                                                            Set

: 1,1 , 2,2 , 3,3 , 4,4 , 4,2 , 2,4                           1,2,3,4

: 2,2 , 3,3 , 4,2 , 2,4                        



  

        8

9

                      1,2,3,4

: 4,3 , 3,4 , 3,3                                                         1,2,3,4

:                                                                                           



 

10

11

1

 

:   (Congruence)                                                  Set of triangles in a plane

:   (Similar)                                                         Set of triangles in a plane









2

13

14

: "has the same area as"                                          Set of triangles in a plane

: "is a brother of"                                                    Set of all living people

: "is a 



 brother of"                                                    Set of all living men

          (Assume that a man is a brother

          of himself)

  

  4.  Which of the above are reflexive? 

  5.  Which of the above are symmetric? 

  6.  Which of the above are transitive? 

  7.  Which of the above are equivalence relations? 

Each exercise refers to an equivalence relation in the previous examples or exercises. List or 

describe the equivalence classes. 

  8.  1    9.  10    10.  12    11.  14   

12.  In part b) of Theorem 16, prove:      , .a b E a E b    Hint: Remember that you are 

proving set equality. 
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3.5     PARTITIONS 

Reread Theorem 16 in Section 3.4. We can now show that equivalence classes satisfy the 

following definition. 

Definition 21. A partition of a nonempty set (universal set) U is a collection  i i F
A


 of subsets 

of U such that: 

 1) For any ,i iA A     

 2) For any , ;  or i j i j i jA A A A A A     

 3) 
i

i F

A U


   

That is, a partition is a collection of nonempty subsets which are disjoint and whose union is the 

whole set. The following are examples. 

EXAMPLE 1. Let A = set of atoms of a puzzle. The pieces form a partition. 

EXAMPLE 2. Let ℝ = real numbers, ℚ = rationals, and J = irrationals. Then  , J  is a partition 

of ℝ. 

EXAMPLE 3. Let ℝ = real numbers, ℤ = integers, and 

  1 .iA x i x x      

Then  i i
A


 is a partition of ℝ. 

EXAMPLE 4. Let  1,2,3,4,5 .U    

 a)      1 2 31,2 , 2,3,4 , 5B B B     

       
3

1i i
B


 is not a partition because 1 2 .B B    

 b)      1 2 31 , 2,3 , 5B B B     

       
3

1i i
B


 is not a partition because 

3

1
.ii

B U


   

Theorem 17. Let   be an equivalence relation on a nonempty set A. Then    ,
a A

E a


 the 

collection of all equivalence classes, is a partition of A (called the induced partition). 
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 Prove: We have to prove the following: 

  1) For any  , .a A E a    

  2) For any            , ,  or .E a E b E a E b E a E b     

  3) .ii F
A A


   

 Proof. Parts 1) and 2) follow from Theorem 16. Part 3) is left as an exercise. ∎ 

 Conversely, we can take a partition and obtain an equivalence relation whose equivalence 

classes are the members of the partition. 

Theorem 18. Suppose  i i P
A


 is a partition of A. We define a relation as follows: 

  , ,  for some .                                                             (1)ia b a b A i F      

Then   is an equivalence relation (called the induced relation). 

 Proof. (Reflexive): Let .a A  Since 
ii F

A A


  it follows that ia A  for some .i F  

Thus  ,a a   by (1). The symmetric and transitive properties are left as exercises. ∎ 

Thus, partitions and equivalence classes go hand in hand. Every equivalence relation induces a 

partition. Every partition induces an equivalence relation. When you think of one, you should 

think of the other. 

EXAMPLE. Find the induced equivalence relation and the set on which it is defined for the 

partition 

        , , ,a b c d   

 From  ,a b  we get        , , , , , , ,a a b b a b b a    

 From  c  we get  ,c c    

 From  d  we get  ,d d    

Thus, the relation is             , , , , , , , , , , ,a a b b a b b a c c d d   and is defined on 

 , , , .a b c d   
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Why Do We Study Equivalence Relations? There are several answers to this question. First, if 

you think of all the equivalence relations we have already considered, you get some idea of how 

much this notion pervades mathematics. Second, future study in mathematics will necessitate the 

use of equivalence relations. Stated as simply as possible, a set may lack a “certain property.” 

We form an equivalence relation on the set of ordered pairs and the result will have the missing 

property. Third, the notion of equivalence relation pervades everyday life much more than you 

realize. For example, equivalence classes (partitions) are a way of categorizing. Think of 

students in your class and the partitions resulting from the following equivalence relations: 

 “in the same row as” 

 “gets the same grade as” 

 “is the same sex as” 

 “is the same height as” 

Another example occurs in the educational process. When you learn a “concept,” you form 

partitions or equivalence classes. In learning “color,” you mentally separate objects into “all the 

red ones,” “all the green ones,” and so on. 

 We close this section by considering an important type of equivalence relation on the set 

of integers, ℤ. Let 

   , , , 3 ,  for some  (or  is divisible by 3) .x y x y x y k k x y          

The equivalence classes are as follows: 

          0 , 9, 6, 3,0,3,6,9, 3 9 3 ,  for any .E E E E k k           

          1 , 8, 5, 2,1,4,7,10, 5 7 3 1 ,  for any .E E E E k k           

          2 , 7, 4, 1,2,5,8,11, 7 8 3 2 ,  for any .E E E E k k           

The partition, or set of equivalence classes, has just three members,       0 , 1 , 2 ,E E E  

sometimes referred to as  mod3  or “integers modulo 3.” 

Exercise Set 3.5 

1. Prove that  mod3  is an equivalence relation. 
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2. Consider the relation on ℤ defined as follows: 

          , , , 2  for some x y x y x y k k         

         a) Prove   is an equivalence relation. 

         b) Find    0  and 1 .E E  Give them other names. 

The set of equivalence classes     0 , 1E E  is called  mod 2 .   

  3.  Consider the relation   on ℤ defined as follows: 

         , , , 4 ,  for some x y x y x y k k         

       a) Prove   is an equivalence relation. 

       b) Find        0 , 1 , 2 , 3 .E E E E  Give other names for these equivalence classes. 

The set           0 , 1 , 2 , 3  is called mod 4 .E E E E   

  4.  Generalize the previous work to  mod .n  For fixed ,n  define 

         , , , , for some x y x y x y nk k         

       a) Prove   is an equivalence relation. 

       b) Describe      0 , 1 , , 1 .E E E n   

       c) How many equivalence classes are there? 

  5.  Given a set A. Prove: 

       a) A A  is an equivalence relation on A. 

       b)   ,Ai a a a A   is an equivalence relation on A. The relation Ai  is called the identity 

relation on A.  
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  6.  Find relations different from any previously discussed which are: 

       a) R, S, T   b) R, S, not T   c) R, not S, T 

       d) not R, S, T  e) R, not S, not T  f) not R, S, not T 

       g) not R, not S, T  h) not R, not S, not T 

  7.  Find the flaw in the following “proof.” 

 Let   be a relation on A. 

       THEOREM:   is symmetric and   is transitive   is reflexive. 

       Proof. If    , ,  then ,a b b a    by symmetry.  

       Then      ,  and , ,a b b a a a       by transitivity.  Thus  ,a a  , so  

          is reflexive. ∎ 

  8.  Decide which of the following collections 𝒫 is a partition on the given set A. If 𝒫 is  

       a partition, describe the induced equivalence relation. 

       a) A =  1,2,3,4 ;  𝒫 =       1,2 , 3 , 4,1   

       b) A =  1,2,3,4 ;  𝒫 =       1,2,3 , 4 , 5   

       c) A =  a, b, c, d, e ;  𝒫 =     a, b, c , d, e   

  9.  Suppose 1 2 and    are equivalence relations on a set A. Prove or disprove: 

       a) 1 2   is an equivalence relation. 

       b) 1 2   is an equivalence relation. 

10.  Let   be a relation on A. Prove: 

       a)   is reflexive 
1   is reflexive 

       b)   is symmetric 
1   is symmetric 

       c)   is transitive 1   is transitive 
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       d)   is an equivalence relation 1   is an equivalence relation 

       e)   is symmetric 1     

11. Prove Part 3) of Theorem 17. 

12.  Prove the symmetric and transitive properties of Theorem 18. 
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3.6     FUNCTIONS 

You have probably encountered functions in previous study. We can use our set theory to give a 

precise definition of a function as a special kind of relation. This may be new to you. Before we 

give this definition, let us motivate it by considering intuitive ways you may have studied 

functions.  

A Function As a Rule. A function f from a set A into a set B is a rule which assigns to each 

element of a set A, called the domain, a unique element in a set B. Often, we have a formula 

like  

  
1

3xf x
x

    

which describes the rule. We can think of it with “blank spaces” 

  
1

3 .f     

We then have a recipe. Given an element, say a, in A, we “plug” it in the blanks to find the 

element it is assigned to. Usually the domain is the set of all numbers that can be “plugged in.” 

For this function, the domain is  0 .x x    

 We can also get the “function machine” idea out of this. For each “input” we get exactly 

one “output.”  

 The notion of a function as a rule is encountered most in physics, chemistry, and related 

sciences.  

Function As a Correspondence. A function from a set A into a set B is a correspondence 

which assigns to each element in a set A a unique element in a set B. 

EXAMPLES. 

 

Note that in (1) 2 is assigned to 5 and no other object in B; 3 is assigned to 5, and no other object 

in B. But in (3) 1 is assigned to both 4 and 5 so (3) is not a function. 
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A Function As a Set of Ordered Pairs. Consider these graphs of the previous correspondences. 

 

Recall that the sets of ordered pairs pictured in (1) and (2) are functions. Note that for (1) and (2) 

no vertical line crosses the graph more than once. But for (3) there is a vertical line which 

crosses the graph more than once. Hence it is not a function. Thus, we could define a function as 

a set of ordered pairs for which no two distinct ordered pairs have the same first 

coordinate.  

A Function As a Relation. We can now give a precise set-theoretic definition of function. 

Definition 22. Let A and B be sets. A function f from A to B, denoted : ,f A B  is a relation f 

from A to B such that 

 a) Df = A 

 b) For every    1 2 1 2 1 2, , , ,  and , .a A b b B a b f a b f b b        

We also say that  ,x y f  means  f x y  and  f x (read “f of x”) is called the value of f at 

x. We then reformulate part b) as 

 b )  For every    1 2 1 2 1 2, , .a a A a a f a f a      

Part b) or b )  insures uniqueness. To see this, we might write the contrapositive 

 b )  For every    1 2 1 2 1 2, , .a a A f a f a a a      

 In truth, there is much controversy among mathematicians about the definition of 

function, as will be shown in the examples and references in the exercises. One way to evidence 

this is to go to the library, pick five mathematics texts at random, and compare their definitions 

of function. 
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The function :f    

   , 3 sinxf x y y x     

could also be represented as follows: 

      , 3 sin ,xf x f x f x x    or 

 :f   described by   3 sin .xf x x    

Note that under our precise definition of function the following terminology is incorrect (even 

though often used): 

 “the function 3 sinxy x  ”    (i) 

 “the function   3 sinxf x x  ”   (ii) 

 “the function  f x ”     (iii) 

This is because (i) and (ii) refer to sentences, not sets, and (iii) refers to the value of f at x, it is 

not a set of ordered pairs. 

EXAMPLES. Find the domain and range and decide which are functions. Let  

   , , , , , ,A a b c B b c d e   for 1) and 2). 

1)         :  by , , , , , , ,f A B f a b a c b d c e    

        , , , , , , .f fD a b c R b c d e    

      The notation :f A B  is false since  ,a b f  and  , ;a c f  f is not a function. 

2)       :  by , , , , ,g A B g a c b d c e    

        , , , , , .g gD a b c R c d e    

     The notation :g A B  is correct; g is a function. Note that Rg ≠ B; this does not prevent it   

     from being a function. 
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3)   2

1
:  by h h x

x
    

          0 0 , 0 .h hD x x R y y        

     This is not a function since  0 .   But, the following is a function: 

     1 1 2

1
: 0  by .h h x

x
     

Exercise Set 3.6 

Graph each of the following relations on ℝ. Then decide which are functions. 

  1.    2,x y y x      2.    2,x y x y   

  3.    , 4x y y       4.    , 2x y x     

  5.    ,x y y x      6.    2 2, 4 9 36x y x y    

Find the domain and range and decide which are functions. Let  a, b, c, dA   and 

 1,2,3,4,5B   for Exercises 7-11.  

  7.        7 7:  by a, 1 , b, 2 , c, 3f A B f    

  8.          8 8:  by a, 1 , b, 2 , c, 3 , d, 4f A B f    

  9.          9 9:  by a, a , b, b , c, c , d, df A A f    

10.            10 10:  by 1,  a , 2, b , 3, c , 4, c , 5, df B A f    

11.          11 11:  by a, 1 , b, 1 , c, 3 , d, 5f A B f    

Definition 23. A function :f A B  is onto, surjective, or a surjection iff for every element b 

in B there exists an element a in A, such that   .f a b   

12.  a) Translate the definition of an onto function to logical symbolism. 

       b) Write a negation of the definition of an onto function. 
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13.  Which of the functions in Exercises 1 and 3 are from the set of real numbers onto the set of  

        real numbers? 

14.  Which of the functions in Exercises 7-11 are onto set B? 

Definition 24. A function :f A B  is one-to-one, injective, or an injection iff for every 

element a and every element b of set A, if     ,  then .f a f b a b    

15.  a) Translate the definition of a one-to-one function to logical symbolism. 

       b) Write a negation of the definition of a one-to-one function. 

16.  Which of the functions in Exercises 1 and 3 are one-to-one? 

17.  Which of the functions Exercises 7-11 are one-to-one? 

18.  Let A be the finite set  1 2, , , .na a a  Use mathematical induction to prove that the set of all     

       functions from set A into set A which are both one-to-one and onto has !n  elements in it. 
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APPENDIX 

The Real Number System 

ℝ denotes the real number system. ℝ is equipped with an algebraic structure, some properties of 

which are listed below. When a property also holds for the set of natural numbers ℕ, the set of 

integers ℤ, or the set of rationals ℚ, we list the appropriate symbol to the right. 

Addition. 

 A1)  (Closure)  a b a b           ℕ, ℤ, ℚ 

 A2)  (Associative Law)    a b c a b c a b c             ℕ, ℤ, ℚ 

 A3)  (Additive Identity) There exists an element denoted 0, such that 

                    for every a, a + 0 = 0 + a = a.      ℤ, ℚ 

 A4)  (Additive Inverse)       0a a a a a a              ℤ, ℚ 

 A5)  (Commutative Law)  a b a b b a          ℕ, ℤ, ℚ 

Multiplication. 

 M1)  (Closure)  a b ab          ℕ, ℤ, ℚ 

 M2)  (Associative Law)    a b c a bc ab c           ℕ, ℤ, ℚ 

 M3)  (Multiplicative Identity) There exists an element, denoted 1, 

                     such that  1 1 .a a a a            ℕ, ℤ, ℚ 

 M4)  (Multiplicative Inverse)  1 1 10 1a a a a a a a         
 

  ℚ 

 M5)  (Commutative Law)  a b ab ba         ℕ, ℤ, ℚ 

 M6)  (Distributive Law)  a b c a b c ab ac            ℕ, ℤ, ℚ 

 M7)  1 ≠ 0 
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Order Properties 

 O1)  (Trichotomy Law) For any two real numbers a, b exactly one of the 

                    following is true: 

                    a)  a < b,                        b)  a = b,                         c)  a > b   ℕ, ℤ, ℚ 

                    For example, 0 0 0.a a a       

 O2)  (Transitive Law)  a b c a b b c a c              ℕ, ℤ, ℚ 

 O3)   a b c a b a c b c              ℕ, ℤ, ℚ 

          a b c a b a c b c              ℕ, ℤ, ℚ 

O4)   0a b c a b c ac bc              ℕ, ℤ, ℚ 

             0a b c a b c ac bc              ℕ, ℤ, ℚ 

 O5)   0a b c a b c ac bc              ℕ, ℤ, ℚ 

          0a b c a b c ac bc              ℕ, ℤ, ℚ 

  O6)  1 > 0         ℕ, ℤ, ℚ 

Other Properties 

 P1)   0a b a b p a p b               ℕ, ℤ, ℚ 

 P2)  Definition.  

                       0 0 ,a a a a a a a            then 

                     0 0a a a            ℕ, ℤ, ℚ 

 P3)   0 0 0a a a             ℤ, ℚ 
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ANSWERS TO SELECTED EXERCISES 

Exercise Set 1.1 

1.   1,2,3,4,5,6,7,8   3.   , 6, 4, 2,0,2,4,6,     5.   1 2,  an integerx x x     

6.   9,  an integerx x x  or  10,  an integerx x x     

7.   10  for some natural number x x k k    9.    11.     13.     15.  =  16.  B = H, E = F, 

 D = G  17.  True  19.  False  21.  True  23.     25.     27.   1x x     29.   0,1,2,3,4,    

31.  A 

Exercise Set 1.2 

1a.  A  1b.   0,8   1c.   0,2,3,8   1d.   0,2,3,8,10   1e.   0,8  1f.   0,2,3,8   1g.   1     

1h.   1   1i.  U  1j.  U  2.    3.     4.     5.     7.  J   8.    9.      

10.   2 1,  for some integer ,x x k k   or  , 5, 3, 1,1,3,5,7,     11a.     11b.      

12a.   , 9, 6, 3,0,3,6,9,     12b.   , 8, 5, 2,1,4,7,10,     12d.     12e.       

12f.     12g.    13.   1, 2    14.     15.     17.   , 2,0,2,   18.   2   19a.   2,3   

19b.    19c.   1, 4   19d.   1,2   19e.   3   19f.     19g.   ,n n   19h.   1 , 1n n       

20b.    , 0   20d.      

Exercise Set 1.3 

1.  b, d, e, f, and g  2a.  x  2b.  n  2c.  x, y  2d.  x  2e.  x, y  3.  a, c  4.   0,1,2,3   5.   0,1   6.       

7.   1, 2   8.     9.   1   10.     11.   1   12.   1   13.   1
21,    14.   1

21,     

15.     16.    and 2x x x     17.  False, 21 0  18.  False  19.  True  20.  True  21.  False,  

22 2   22.  True  23.  True  24.  True  25.  True  26.  True  27.  True  28.  True  29.  True   

30.  False, see Exercise 26  31.  False  32.  False, 2 3 0    33.  True  34.  True 
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Exercise Set 1.4 

1.  F  2.  T  3.  T  4.  F  5.  F  6.  T  7.  ;P   2 3 ;  2 3;  It is false that 2 = 3; It is not true 

that 2 = 3  8.  ;P  e is not irrational; e is rational; It is false that e is irrational; It is not true that 

e is irrational  9.  T  10.  F  11.  x y   12.  x y   13.  3 > y  14.  2 1z x    15.  T  16.  T  17.  F  

18.  T   

In 19 – 33 P Q  can replace “If P, then Q,” and vice versa. 

19.  If n is prime, then n has no factorization.  20.  If 
1

n

n

u




  converges, then lim 0.n
n

u


   21.  If 

1,r   then    lim 1 .n

n
a ar ar a r


       22.  If ,x  then .x   23.  If 

1

n

n

u




  

converges, then 
1

n

n

u




 converges.  25.  a a     26.  x x     28.  1  parallel to  

2 1 2     29.  x is a square   x is a rectangle.  30.  x is a triangle   x is a polygon.  

31.  x = y   3x = 3y  32.     2 2f x x f x x     33.  x is a square   x is not a triangle. 

Exercise Set 1.5 

1.  F  2.  T  3.  F  4.  T  5.  T  6.  x = 5   2x = 10  7.  x    

  where 0x p q p q q        8.   
1n n

x



 has a limit 0m nx x    as m, n go to 

infinity.  9.  ab = 0  0 0a b      10.  A triangle is isosceles   two sides are equal. If we 

used a variable x for “triangle” we could translate the sentence as: x is isosceles   x has two 

sides equal.  11.  1
22 1 0x x      12.  f is continuous   f is differentiable.   

13.   0p q q p q         14.  (ABC is a triangle   ABC is isosceles)   ABC has 

two equal sides.  15.   2 2, , ,  and  are real numbers 0 0 4 0a b c x a ax bx c b ac           

the roots of 2 0ax bx c    are real and equal.  16.  
1

n

n

u




  is convergent lim 0.n
n

u


     

17.  lim 0n
n

u


  
1

n

n

u




  is not convergent.  18.  a   (a is even   a is odd).  19.  (f is 

differentiable   g is differentiable) g f  is differentiable.  20.  (u and v are differentiable 

functions of x)       is also differentiable .uv d uv dx u dv dx v du dx         

21.   x J x x       22.   0x x x        
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23.   x A B x A x B        24.   x A B x A x B        25.  x A x A     

Exercise Set 1.6 

1.  ,x  x is a triangle x  is a polygon.  2.  ,x x  is a natural number x  is an integer.   

3.    is a natural number  is even  is odd .x x x x       4.  ,x x  is prime x  is even. 

5.   , lim 1 .
n

x x n


    6.       
2

2 2
n

X n X f x dx n f X      
     7.  , 32p q p q      

8.  ,x y   x < y  9.  ,y x   x + 0 = y  10.  ,x y 
yx  is irrational.  11.  ,x y   x + y = y + x   

12.  2,x y x y     13.  ,x y   xy = yx  14.   1 2 2x x     15.   x x k y y k     
 

  

16.     ,f D f C f    17.     ,f C f D f     

18.         , ,x E x A x x A x E x             

19.         , ,x V x O x x O x V x              

20.         , ,x E x L x x L x E x             21.     ,x S x R x    22.  ;  F 

23.   , 3, 2, 1 ,    or ;  F  24.  ;  T  25.   1 ;  F  26.  R; T  27.  R; T  28.  ;  F  29.  ;  

T  30.  ;  T  31.   1 ;  T  32.  R; T  33.  R; T  34.  If  xP x  is true, then  xP x  is true. 

(Recall that we are considering only nonempty universal sets.) We will prove this later. 

Exercise Set 1.7 

1a.  T  1b.  F; the sentence  0y y   is false.  1c.  F; each sentence  0 ,x x    1 ,x x   

 2x x   is false.  1d.  T; y = 0  1e.  T; given an x there is a y, y = x, such that .y x   1f.  T;  

 0x x   is true.  1g.  F; there is no number in the set which when added to 1 or 2 yields 0.   

1h.  T; this is the commutative law of addition.  1i.  F  2a.  T  2b.  F  2c.  F  2d.  T  2e.  T  2f.  T  

2g.  F  2h.  T  2i.  T  3a.  T  3b.  T  3c.  F  3d.  F  3e.  T  3f.  F  3g.  T  3h.  T  3i.  T  4a.  F; the 

function f described by  f x x  is not differentiable at 0 and hence not differentiable.  4b.  T  

4c.  T; there are many such functions; e.g.,   sin .f x x   4d.  T; see the answer to (a).  5a.  T  

5b.  T  5c.  T; 
1

nu n    6a.  T  6b.  F  6c.  F  6d.  No, “x < y” yields a false sentence of 

this type.  See (c).  6e.  T  6f.  Yes, we prove this later.  8a.  T  8b.  F  8c.  F  8d.  F  8e.  F  8f.  

No  9.  Not every sentence of this type is true. 
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Exercise Set 1.8 

1 – 10, 15, 16, 17 are tautologies. 11 – 14 are not. 

Exercise Set 1.9 

1.  3x = 15  2.  Q  3.  P Q   4.  Valid  5.  Valid  6.  Valid  7.  Valid  8.  Valid  9.  Valid   

10.  Valid  11.  Invalid  12.  Invalid  13.  Valid  14.  Invalid  15.  Valid  16.  Valid 

Exercise Set 1.10 

1.  If   cos ,f x x   then   sin .f x x  Yes, because the previous sentence is true and its 

contrapositive is equivalent to it.  2.  x is not odd   x is even.  3.  x is not real   x is not 

rational.  4.  f discontinuous   f is not differentiable.  5.  x B x A     6.  x even 2x  even 

7.  x odd 2x  odd  8.  2x  odd x  odd  9.  A A B     10.   0x x       

11.     x y f x f y     12.     f x f y x y     13.     f x f y x y     

14.  
1

n

n

u




  div. 
1

n

n

u




  div. 

Exercise Set 1.11 

1.   , 0x x Q x     2.  , 0x y z q j x y z q j            3.  ~P Q R    4.  ,x y z     

xz = y  5.     x x c f x f c               6.   mn m m n a a          

7.  x y J x y J       or x y J x y        8.  ~P Q R    9.  x A x B      

10.  x A x B     11.  1 ~nP P Q     12.     ~ ~P Q Q P      

13.  0 0 ,a b n na b         14a.     ,x f x f x     14b.     ,x f x f x      

15a.     ,x f x f x      15b.     ,x f x f x      16a.     ,x y f x f y      

16b.     ,x y f x f y     17a.     0 ,p x f x p f x       17b.     0 ,p x f x p f x       

18a.     x y x y f x f y         18b.     x y x y f x f y          

19a.     x y x y f x f y         19b.     x y x y f x f y          

20a.     x y x y f x f y         20b.     x y x y f x f y         

21a.     x y f x f y x y         21b.     x y f x f y x y         
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22a.   ,y B x A f x y       22b.   ,y B x A f x y        

23a.   00 0, 0x x x f x L                

23b.   00 0, 0x x x f x L                

24a.   ,M x f x M     24b.   ,M x f x M     

25a.     0 00 0,x x x f x f x               

25b.     0 00 0,x x x f x f x               

26a.     0 0 ,x E y E x y f x f y                  

26b.     0 0 ,x E y E x y f x f y                  

27a.     0 0 ,x E y E x y f x f y                  

27b.     0 0 ,x E y E x y f x f y                  

28a.   0 0 00 , n mn m n m n n n a a                 

28b.   0 0 00 , n mn m n m n n n a a                 

29.  
1

1n

n






  does not converge  30.  To show:  
1
,n n

u



  

1

lim 0n n
n

n

u u





   does not converge. 

Consider  1
1
;

n
n





 

1 1

1

lim 0
n

n

n n


 




   does not converge.  31.   f x x  provides a 

counterexample.  32.    2f x x  provides a counterexample. 

Exercise Set 2.1 

1.  a = 2k + 1 iff a is odd.  2.  A polygon is a quadrilateral iff it has just four sides.  3.  max
S

f  is 

the maximum value of f on S iff it is the largest value assumed by f on S.  6.  x is a real number 

iff x equals an infinite decimal.  7.  x is irrational iff x is a real number which is not rational.  8.  

A number is complex iff it is of the form x + yi, where x and y are real numbers and 2 1.i      

Exercise Set 2.2 

1.  See text.  
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Exercise Set 2.3 

1.  a is an odd integer 2a  is an odd integer.   

2.  Proof. Assume a is an odd integer. Then a = 2k + 1 for some integer k, so 

 2 2 24 4 1 2 2 2 1.a k k k k       Hence 2a  is an odd integer. ∎ 

4.  Proof. Assume a even and b even. Then there exist integers k and m such that a = 2k and b = 

2m. Then      2 2 2 2 ,ab k m k m    so ab is even. ∎ 

6.  Assume a even and b odd. Then there exist integers k and m such that a = 2k and b = 2m + 1. 

Then  2 2 1 ,ab k m   so ab is even. ∎ 

10.  Proof. Assume  , , .y x P x y   There is a replacement b for y such that  , ,x P x b  is true. 

Thus for every u in the universal set  ,P u b  is true. Then b yields a true sentence for every u, so  

 , ,y P u y  is true for every u. Hence,  , ,x y P x y   is true. ∎ 

13.       P Q R P Q P R              15.     P Q S R       

  P Q S R       

Exercise Set 2.4 

1.  Proof has been given before.  3a.  () (This holds by O3 of the Appendix.   

3b.  () Proof. Assume .a c b c    Then by A4 and O3 in the Appendix, 

       ;a c c b c c        by A2, A3, and A4,  

 

   

0 0

.

a c c b c c

a b

a b

            

  



  

∎ 

4a.  Proof. Assume x is odd. Then for some integer k, 2 1.x k    Then x + 1 = 2k + 2 =  

2(k + 1), so x + 1 is even. ∎ 
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4b.  Proof. Assume x + 1 is even. Then for some k, 1 2 ,x k    thus 

 

 

2 1

2 1 2 2

2 2 1

2 1 1;

x k

k

k

k

  

   

  

  

  

so x is odd. ∎ 

8.       P Q R P Q R P R Q                

Exercise Set 2.5 

1.  Let x be arbitrary. Prove “x2 is even iff x is even” by proving a) if x2 is even, then x is even, 

and b) if x is even, then x2 is even.  8.  To do this let x be arbitrary and prove x + y = x. 

Exercise Set 2.6 

1.  A right; A obtuse  2a.  f is not differentiable.  2b.  f is odd.  2c.  f is not constant.  3a.  x is odd.  

3b.  x = 9   

4.  Proof. x real 0 0 0x x x      . 

 CASE 1)   

  

0

0 0

x x x

x x x x x

x x

  

         

  

  

 CASE 2) 

 

0

0 0

x x x

x x x x

x x

   

       

  

  

 CASE 3) 

 

0

0 0 0

x x x

x x x x

x x

  

       

  

  

∎ 
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5.  Proof. x real 0 0.x x      

 CASE 1) 

 

2 2 2

2 2

2 2

0 0

0

x x x x

x x x x x

x x

    

    

 

  

 

 CASE 2) 

   

2 2 2

2 2

22

0 0

0

x x x x

x x x x x x x

x x

    

        

 

  

∎ 

13.  Proof. x is an integer  x is even or x is odd. 

 CASE 1) x is even. Then x = 2k for some .k  Hence  

 

   

 

22

2

2

2 2

4 2

2 2 ,

x x k k

k k

k k

  

 

 

  

so 2x x  is even.  

 CASE 2) x is odd. Then x = 2k + 1 for some .k  You complete. ∎ 

14.  Analogous to Exercise 13.   

18.  Proof. 0 0 or 0.x x x      

 CASE 1)    0 1.x f x x x f x        

 CASE 2)    0 1.x f x x x f x         ∎ 

Exercise Set 2.7 

In most of these answers only the induction step is given. You should be able to complete the 

basis step. 
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1.  Assume   : 2kP k k   

Deduce   11 : 2 1kP k k     

Now  12 2 2 2 ,  by k k k P k      

2 1,k k k k     since for every natural number k, 1k    

We used Property O3 of the Appendix. 

2.  ANALYSIS: Analogous to Exercise 1. 

3.  Assume   : 2 2kP k    

Deduce   11 : 2 2kP k     

 

1Now 2 2 ,  by an example

2,  by 

k k

P k

 


  

4.  Assume   : 2 2kP k k    

Deduce     11 : 2 1 2kP k k      

   

  1

Now 2 1 2 2 2 2,  by 

2 2 ,  by Exercise 3

2 2 2

k

k k

k k

k k P k



    

 

 

  

6.  Assume   1: 2 !kP k k    

Deduce    1 : 2 1 !kP k k     

   

 

 

1Now 2 2 2 2 !,  by 

1 !,  since 1 1 1 1 2

1 !

k k k P k

k k k k

k

  

       

 

  

7.  BASIS STEP. 

  4

4 4

4 : 2 4!

Now 2 16 and 4! 24 so 2 4!

P 
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INDUCTION STEP. 

Assume   : 2 !kP k k   

Deduce    11 : 2 1 !kP k k     

   

 

 

12 2 2 2 !,  by 

1 !

1 !

k k k P k

k k

k

   

 

 

  

9.  INDUCTION STEP. 

Assume      
22: 2 ! 2 !kP k k k   

Deduce      
22 21 : 2 1 ! 2 1 !kP k k k            

Now         22 1 ! 2 2 2 1 2 ! 4 6 2 !k k k k k k         2k   

    

   

  

  

2 22 2 2 2

2 22 2

22 2 2

22

and 2 1 ! 2 1 !

2 1 !

2 2 2 1 !

4 8 4 !

k k

k

k

k k k

k k

k k k

k k k

 



         

  

    

  2k
2

  

Then noting that  2 24 6 2 4 8 4k k k k      and using P(k) we have 

 

    

     

  

 

2

22 2

22 2

22 2

2 1 ! 4 6 2 2 !

4 6 2 2 ! ,  by 

2 4 8 4 !

2 1 !

k

k

k

k k k k

k k k P k

k k k

k

     

    

   

   

  

ANALYSIS: The two expressions of P(k + 1) were expanded hopefully to see where P(k) could 

be applied. Note the bold type. The proof then followed via P(k) and the noted inequality. 

10.  INDUCTION STEP. 

Assume   : sin sinP k kx k x   

Deduce      1 : sin 1 1 sinP k k x k x      
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Now  

 

   

 

 

sin 1 sin

sin cos cos sin ,  by the formula in the hint

sin cos cos sin ,  by 

sin cos cos sin ,  since 

sin sin ,  since cos 1 and sin 1

sin sin ,  by 

1 sin .

k x kx x

kx x kx x

kx x kx x p q p q

kx x kx x pq p q

kx x x x

k x x P k

k x

  

 

    

     

   

 

 

  

13.  BASIS STEP. 

Prove  
sin 2

2 : cos
2sin

u
P u

u
   

sin 2 2sin cos
cos

2sin 2sin

u u u
u

u u
    

INDUCTION STEP. 

Assume   1 sin 2
: cos cos 2

2 sin

k
k

k

u
P k u u

u

    

Deduce  
1

1

1

sin 2
1 : cos cos 2 cos 2

2 sin

k
k k

k

u
P k u u u

u





    

Now  

 

 

 

1

1
2

1

1

sin 2
cos cos 2 cos 2 cos 2  by 

2 sin

sin 2 cos 2

2 sin

sin 2 2
,  since 2sin cos sin 2

2 sin

sin 2

2 sin

k
k k k

k

k k

k

k

k

k

k

u
u u u u P k

u

u u

u

u
a a a

u

u

u
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19.  INDUCTION STEP. 

Assume  
2

1

:
2

k

j

k k
P k j




   

Deduce  
   

2 21

1

1 1 3 2
1 :

2 2

k

j

k k k k
P k j





    
     

Now  

 

 

   

 

1

1 1

2

2

2

1 ,  by definition of -notation

1 ,  by 
2

2 1

2 2

3 2

2

k k

j j

j j k

k k
k P k

kk k

k k



 

   


  


 

 


 

  

32.  Test the argument when proving    1 2 .P P   49e.  2 1n    

Exercise Set 2.8 

1.  Analogous to EXAMPLE 2.  2.  Assume for contradiction that there exist an x and y such that  

0 0 0.x y xy      Then    1 1 1 ,x xy x x y y y        by M4, M5. Also, since xy = 0,  

 1 1 0 0.x xy x      Therefore y = 0. But 0y   is assumed.  3.  Assume for contradiction that 

there exists an x such that 10 0.x x    Then 1 0,x x x    by O3. But 1 1x x   and 0 0.x    

Therefore 1 0.  But by O7, 1 > 0.  5.  Assume for contradiction that there exists an x such that  

0, 1.x x x    Then  

 

1,  by O3 since 0

1 1,  by assumption

1

x x x x x x

x x

x

     

   

 

  

Therefore 1,x x   which contradicts the hint.  7a.  Hint: Having negated the sentence use the 

fact that 2  is irrational and consider  
2

2  and 2.a b    7b.  No  8.  Since for every real 

number x, x + k = k + x = x, then 0 + k = k + 0 = 0. But we also know that k + 0 = k. Therefore k 

= 0. Hence 0k   and k = 0, which is a contradiction.  14.  Assume for contradiction that there 

exists an x > 0 such that for every even number m, .m x  This means that every even number is 
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less than or equal to x. But consider 2x. This is an even number such that x < 2x, since x > 0. This 

contradicts every even number being less than x. 

Exercise Set 2.9 

1.  ! , P Q      2.  Same as 1  3.  ! ,x y x y y x y        4.  ! ,x y x y y x y        

5.  ! ,x y z x y z       6.  ! , 0x y x y y x         8.  Analogous to the example.   

9.  Existence: See A4 of the Appendix. Uniqueness: Let x be arbitrary. Assume there are two 

elements z and y such that x + y = y + x = 0 and x + z = z + x = 0. Then  

 

 

 

,  since 0

,  associative law A2

0 ,  since 0

,  since 0

y x z z z z

y x z z

y z x z

y z y y

    

  

   

  

  

Exercise Set 2.10 

1.  Assume: Q   

Deduce: P   

Analytic Process: 

 

 

 

 

 if 

 if 

 if 

Hence 

P R R P

R S S R

S Q Q S

Q S R P

Q P







  

 

  

3.  e  4.  f  5.  a  6.  d  7.  c  8.  b  9.  g  10.  h  11.  x = 5  12.  3    

Exercise Set 3.1 

Brief proofs or hints are provided, often just an analysis. 

1.  ANALYSIS: See Theorem 4a).  3.  ANALYSIS: See Theorem 8.   
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4.   

 

     

   

 

,  by Thm. 8

,  by Thm. 5

Then by Thm. 7,

,  and by Thm. 5,

.

A B A B

A B

A B A B

A B A B

       

 

     
  

   

  

7a).  ,  by the tautology x A x A P P      

9.   

 
 

 

,  by Theorem 6

,  by Theorem 7

,  by Theorem 9, and Exercise 8

,  by Theorem 5

A B A B

A B

A B U

A B U

   

   

   

  

  

10.  ANALYSIS. Note the similarity of    A B C A B C      to 

   P Q R P Q R       

12.  A A   by Theorem 11. To prove A A  note that  

 
,  by Definition 2

,  since  is false

x A x A x

x A x

    

  
  

13.  ,x A x A    true by the tautology P P   

,x A x A     for every x 

,x A A    for every x 

,x x A A     

,A A U    by Axiom 2 

15.  Hint: Use Exercise 8 and Theorems 5 and 7. 
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17.  To prove  .x x A x U     Consider  

 

T, by definition of ' '

T, by definition of ' '

F always true

T always true

x A x U

x A x U





  

  

  

20.  ANALYSIS. Use Theorem 12 and Theorem 5. 

23.   

 

 

 

     

,  by Axiom 1

,  by Definition 2

,  by the tautology 

,  by Definition 1.

A B B x x A B x B

x x A x B x B

x x A x B P Q Q P Q

A B

      

       

         

 

  

24.  ANALYSIS: Analogous to Exercise 23.  25.  ANALYSIS: Use Theorems 2 and 3.   

28.  A A A U A       

30.   

 

   

 

   

 

B B A B B A

B B A

B B B A

B A

B A

    

  

   

 

 

  

Now .A B B A A     Hence   .A B B B A A       

34.  Let    1,2,3  and 2,3,4 .A B    

Exercise Set 3.2 

2a.  1A    2b.  nA    3.  See Theorem 14 for an analogous proof.  4a.  1A    4b.  An   4c.  1A    4d.     

6a.  A6   6d.     6e.      10a.      10b.  Yes  10c.   3,4 , ,     10d.  No  10e.  The sets in 

this exercise provide a counterexample  10f.  True  11.  Prove the contrapositive, A  and 

.B A B    Assume A  and .B   Then ,A B    by Exercise 12, 

Exercise Set 3.1  12.  Suppose, for contradiction, that there exists a subset A of U, for which 
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.A A  Recall that the universal set is non-empty. Thus, there exists at least one element .x U  

Now ,U A A   so if x is in U it must be in A or in .A  CASE 1. Suppose .x A  By definition, 

,x A  so .A A  CASE 2. Suppose .x A  By definition ,  so .x A A A   We have a 

contradiction in each case. 

Exercise Set 3.3 

1.              ,5 , ,6 , ,5 , ,6 , ,5 , ,6a a b b c c   7.       4,2 , 4, 2 , 3, 3   8.  DM  0 ,x x   RM 

   9a.  An ellipse with vertices at        0,5 , 0, 5 , 2,0 , 2,0    9b.   2 2 ,x x     

 5 5y y     11.  Assume    , , .a b b a  Then          , , , , .a a b b b a  Then    ,a b  

so a = b.  12.  All false except b  20.  Line containing points    0, 1  and 1,2    

21.  1x y    

 

23.  Exterior of circle centered at  0,0  with radius 2.  27.    1 , 3 1x y x y       

32.  1     

Exercise Set 3.4 

2.    is symmetric    , , , , ;a b A a b b a          is not symmetric 

   , , ,a b A a b b a         4.  6, 9, 10, 11, 12, 14  5.  6, 7, 8, 10, 11, 12, 14  6.  6, 9, 10, 

11, 12, 13, 14  7.  6, 10, 11, 12, 14  9.   E T   the set of all triangles congruent to T, for each 

triangle T 
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Exercise Set 3.5 

1.  For any integer a, 0 3 0,a a     so  , ,a a   and   is reflexive. Assume for any fixed 

but arbitrary integers a, b, that  , .a b   Then 3a b k   for some integer k. Then 

 3 ,b a k    and since k  is still an integer,  , ,  so b a    is symmetric. Assume  ,a b   

and  , .b c   Then 3  and 3 ,a b k b c m     for some integers k and m. Then 

   a c a b b c       3k + 3m  3 ,k m   so   is transitive.  7.  You don’t know at the 

outset that  ,a b   for any elements a, b.   

8.  c);                           , , , , , , , , , , , , , , , , , , , , , , , , ,a a b b c c d d e e a b b a a c c a b c c b d e e d   

Exercise Set 3.6 

1 and 3 are functions; the rest are not. 7 – 11 are all functions.  7.  Df  , , ,a b c   

Rf  1,2,3   11.  Df  , , , ,a b c d  Rf  1,3,5   12a.  :f A B  is onto ,b B a A     

  .f b a   12b.  f is not onto , ( ) .b B a A f a b        13.  None 

14.  None  15a.  :f A B  is one-to-one    , .a A b B f a f b a b          

15b.  f is not one-to-one    , .a A b B f a f b a b         16.  Neither  17.  7, 8, 9 

 

 



174 

 

INDEX 

A 

Analogy, discovery proofs by, 2.10 

Analytic process, 2.10 

Antecedent, 1.4 

Archimedean property, 1.11 exercises 

Argument, 1.9 

    invalid, 1.9 

    valid, 1.9 

Associative laws, 1.9, 3.2 

 

 B 

Basis step (induction argument), 2.7 

Bernoulli’s inequality, 2.7 (exercises) 

Biconditional, 1.5 

    proof of, 2.4 

 

 C 

Cantor, Georg, 3.1 

Carroll, Lewis, 2.1 

Cartesian product, 3.3 

Cases, proof by, 1.9, 2.6 

Cauchy sequence, 1.11 (exercises) 

Combination of connectives, 1.5 

Commutative laws, 1.9 

Complement of a set, 1.2 

Conditional, 1.4 

    proof of, 2.3 

Conjunction, 1.4 

 

Consequent, 1.4 

Contradiction, 2.8 

    proof by, 1.8 (exercises), 2.8 

Contrapositive, 1.8, 1.10 

    proof by, 2.3 

Converse, 1.9 (exercises) 

Coordinates, 3.3 

Counterexamples, 1.11 

Creativity, proof, 2.10 

D 

Deduction, 2.2 

Deduction theorem, 2.3 

Deductive reasoning, 2.7 

Definitions, 2.1 

    recursive, 2.7 

Demoivre’s theorem, 2.7 (exercises) 

DeMorgan’s laws, 1.8 

Difference, 3.1 (exercises) 

    symmetric, 3.1 (exercises) 

Disjoint sets, 3.1, 3.2 (exercises) 

    pairwise, 3.2 (exercises) 

Disjunction, 1.4 

Distributive laws, 1.9 

Divisor, proper, 2.3 (exercises) 

Domain, 3.3 

Doyle, Sir Arthur Conan, 2.8 

 E 
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e, 1.5 (exercises) 

Empty set, 1.1 

Equivalence classes, 3.4 

Equivalence relations, 3.4 

Equivalent sentences, 1.5 

Existential quantifier, 1.6 

 

 F 

Family of sets, 3.2 

    infinite, 3.2 

Function(s), 3.6 

    bounded, 1.11 (exercises) 

    constant, 1.11 (exercises) 

    continuous, 1.11 (exercises) 

    as correspondences, 3.6 

    decreasing, 1.11 (exercises) 

    even, 1.11 (exercises) 

    increasing, 1.11 

    limit of, 1.11 (exercises) 

    odd, 1.11 (exercises) 

    one-to-one, 1.11 (exercises), 3.6 

    onto, 1.11 (exercises), 3.6 

    periodic, 1.11 (exercises) 

    as a relation, 3.6 

    as a rule, 3.6 

    as a set of ordered pairs, 3.6 

    strictly decreasing, 1.11 (exercises) 

    strictly increasing, 1.11 (exercises) 

    uniformly continuous, 1.11 (exercises) 

 

 I 

Iff, 1.5 

Iff-string, 2.4 

Indexed intersections, 3.2 

Indexed unions, 3.2 

Indexing set, 3.2 

Indirect proof, 2.8 

Induction, mathematical, 2.7 

Induction step, 2.7 

Inductive reasoning, 2.7 

Integers, 1.2 

Intersection of sets, 1.1 

Intervals, 1.2 (exercises) 

Invalid argument, 1.9 

Inverse relations, 3.3 

Irrational numbers, 1.2 

 

 L 

Law of syllogism, 1.8 (exercises), 1.9 

Laws 

    associative, 1.9 

    commutative, 1.9 

    DeMorgan’s, 1.8 (exercises) 

    distributive, 1.9 
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 M 

Mathematical induction, 2.7 

    principle of, 2.7 

Mathematical systems, 2.1 

Modus ponens, rule of, 1.8 (exercises), 1.9 

 

 N 

Natural numbers, 1.2 

Necessary condition, 1.4, 1.5 

Negation, 1.4, 1.11 

    simplified, 1.11 

Numbers 

    integers, 1.2 

    irrational, 1.2 

    natural, 1.2 

    perfect, 2.3 (exercises) 

    prime, 1.2 

    rational, 1.2 

    real, 1.2 

    whole, 1.2  

 

 O 

Ordered pairs, 3.3 

 

 P 

Partitions, 3.5 

    induced, 3.5 

Power set, 1.2 (exercises), 1.6, 3.2 

Premise, 1.9 

Prime numbers, 1.2 

Proof, 2.1-2.10 

    by cases, 1.9, 2.6 

    by contradiction, 1.8 (exercises), 2.8 

    by contrapositive, 2.3 

    by mathematical induction, 2.7 

    creativity, 2.10 

    formal, 2.2 

    indirect, 2.8 

    informal, 2.2 

    of biconditional sentences, 2.4 

    of conditional sentences, 2.3 

    of existence and uniqueness, 2.9 

    of quantified sentences, 2.5, 2.7 

 

 Q 

Quantified sentences, 1.6 

    proof of, 2.5, 2.7 

    truth values of, 1.6, 1.7 

Quantifiers, 1.6 

    combinations of, 1.6 

    existential, 1.6 

    universal, 1.6 

 

 R 

Range, 3.3 

Rational numbers, 1.2 
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Real number system, Appendix 

Reasoning, 

    deductive, 2.7 

    inductive, 2.7 

Reasoning sentences, 1.8 

Recursive definitions, 2.7 

Reductio ad absurdam, 2.8 

Reflexive, 3.4 

Relations, 3.3 

    equivalence, 3.4 

    identity, 3.5 (exercises) 

    induced, 3.5 

    inverse, 3.3 

Roster method, 1.1 

Rule of conditional proof, 2.3 

Rule of modus ponens, 2.9 

Rule of substitution, 2.9 

 

 S 

Sentences, 1.3 

    biconditional, 1.5 

    conditional, 1.4 

    equivalent, 1.5 

    quantified, 1.6, 1.7 

    reasoning, 1.8 

Sentence connectives, 1.4 

Set(s), 1.1, 1.2, 3.1-3.6 

    collection of, 3.2 

    complement of, 1.2 

    disjoint, 3.1 

        pairwise, 3.2 (exercises) 

    empty, 1.1 

    equality of, 1.1 

    family of, 3.2 

        infinite, 3.2 

    indexed intersections, 3.2 

    indexed unions, 3.2 

    indexing, 3.2 

    intersection of, 1.1 

    membership, 1.1 

    power, 1.2 (exercises), 1.6, 3.2 

    properties, 3.1, 3.2 

    solution, 1.3 

    subset of, 1.1 

    symbolism for, 1.1 

    union of, 1.1 

    universal, 1.2 

Set theory, 3.1 

Sigma notation, 2.7 

Solution sets, 1.3 

Statements, 1.3 

Subsets, 1.1 

    of real numbers, 1.2 

Substitution, rule of, 1.9 

Sufficient condition, 1.4, 1.5 

Syllogism, law of, 1.8 (exercises), 1.9 
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Symmetric, 3.4 

Symmetric difference, 3.1 (exercises) 

 

 T 

Tautologies, 1.8, 1.9 

Theorem, 2.2 

Thomas, George B., 2.8 

Tower of Hanoi problem, 2.7 (exercises) 

Transitive, 3.4 

Truth table, 1.4 

Truth value, 1.4, 1.6, 1.7 

 

 U 

Union of sets, 1.1 

Universal quantifier, 1.6 

Universal sets, 1.2, 1.6 

 

 V 

Valid arguments, 1.9 

Variable, 1.3 

 

 W 

Whole numbers, 1.2 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 




